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Abstract

Walton & Meek [13] obtained fair G Pythagorean hodograph (PH) quintic transition S- and C-shaped
curves connecting two circles. It was shown that an S-shaped curve has no curvature extremum and a C-
shaped curve has a single curvature extremum. We simplified and completed their analysis. A family of
fair PH quintic transition curves between two circles has been derived. We presented an algorithm with
less restrictive and most reasonable constraints.
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1 Introduction

Parametric cubic curves are popular in CAD applications because they are the lowest degree polynomial
curves that allow inflection points (where curvature is zero). They are suitable for blending, e.g. rounding
corners, or for smooth transition between two curves, e.g. two circular arcs. The Bézier form of a
parametric cubic curve is usually used in CAD and CAGD applications because of its geometric and
numerical properties. Many authors have advocated their use in different applications like data fitting
and font designing. The importance of using fair curves in the design process is well documented in the
literature [1, 5, 3, 6, 9, 10]. Consumer products such as ping-pong paddles can be designed by blending
circles. To be visually pleasing it is desirable that the blend be fair. For applications such as the design
of highways or railways it is desirable that transitions be fair. Sudden changes between curves of widely
different radii or between long tangents and sharp curves should be avoided by the use of curves of
gradually increasing or decreasing radii without at the same time introducing an appearance of forced
alignment. The importance of this design feature is discussed in [2].

Cubic curves, although smoother, are not always helpful since they might have unwanted inflection
points and singularities (See [7, 8]). A cubic segment has the following undesirable features:

e Its arc-length is the integral part of the square root of a polynomial of its parameter.
o Its offset is neither polynomial, nor a rational algebraic function of its parameter.
e It may have more curavture extrema than necessary.

Pythagorean Hodograph (PH) curves do not suffer from the first two of the aforementioned undesirable
features. A quintic is the lowest degree PH curve that may have an inflection point, as required for
an S-shaped transition curve. Spirals have several advantages of containing neither inflection points,
singularities nor curvature extrema (See [4, 12]). Such curves are useful for transition between two circles
(See [11]). Walton & Meek [13] considered planar G2 quintic transition between two circles. They showed
there is no curvature extremum in the case of an S-shaped transition, and there is a curvature extremum
in the case of C-transition.

The objectives of this paper are:

e To simplify and complete the analysis of Walton & Meek [13].
o To obtain a family of fair G> PH quintic transition curves between two non-enclosing circles.

*E-mail: habib@po.minc.ne.jp
TE-mail: msakai@sci.kagoshima-u.ac.jp, Department of Mathematics and Computer Science

fGraduate School of Science and Engineering, Korimoto 1-21-35, Kagoshima University, Kagoshima 890-0065, Japan.

9-1



e To achieve more flexible and less restrictive constraints.

e To discuss and prove all the shape features of transition curve.

e To find the locus of the center of smaller circle.

Our compact algorithm also guarantee the absence of interior curvature extremum for an S-shaped
transition curve and one curvature extremum for C-shaped transition curve. The organization of our
paper is as follows. Next section gives a brief discussion of the notation and conventions used in this
paper with some theoretical background and description of method. Results for S- and C-shaped G?
cubic transitions are then presented followed by illustrative examples and concluding remarks.

2 Background and Description of Method

We denote the two circles by £2,, (2,, with centers Cy, C; and radii ry, r1, respectively. With
r(=||C1 — Col|) and 71 = A379,0 < A < 1, we consider the following problems:
(i) For ro +r1 < r (the circles §2;, i = 0,1 do not intersect), find an S- shaped transition cubic curve
from 2, to f2,.
(ii) For rog — r1 < r (the smaller circle {2, is not enclosed in the larger circle £2,), find a C- shaped
transition cubic curve from (2, to {2,.

In each case, this paper treats the curve whose initial curvature is positive.

Consider PH quintic curve z(t) (= (z(t),y(¢))),0 <t <1 of the form:

2'(t) = (u(t)” — v(t)?, 2u(t)u(t)) (2.1)

where
u(t) = up(1 — )% + 2ust(1 — t) +ugt®,  v(t) = vo(1 — ) + 201t(1 — t) + vat? (2.2)

Then,

z(t) = 25: (5> P,(1—t)° " (2.3)

The Bézier points are easily obtained:

1 1
Py =Py + 5 ((ug —v3), 2uovo), Po=Pi+ 5 ((uou1 — vovr), (u1vo + ugv1))

1
P; =P, + i ((2u? + ugug — 207 — vova), (ugvg + 4uivy + uovg)) (2.4)
1 1
Pys=P3+ 5 ((ulug - ’1}17]2), (ugvl + ’11,11}2)) , Ps=Ps+ 5 ((u% - ’U%), 2u2'l}2)
Its signed curvature k() and «'(t) are given by

() — 2'(t) x 2"(t)
€ = 0F (25)
[a2(0) + 0 (0} (8) = 2 [fult0 () — u (0(8)} {u2(0) + 02(0))

—4{u<> (8) — (o)} {ultyd (1) + v ()] (= 20(1)) (2.6

where x stands for the two-dimensional cross product, (zg,%0)” % (z1,51)7 = 2oy1 — z1y0. Letting
T; = P;41 — Py, define 0 to be the angle from Ty to Ty and v to be the angle from T3 to T4. As in
[13], To || T4 (note v = —0; refer to Lemma 2.1) and v = 6 are to be taken for the S— and C'—curves,
respectively. Tt will be easily checked that [|2/(0)||/[|2(1)|] = (ro/r1)%/3; refer to (2.9) and (2.24).
Without loss of generality, a shift and rotation enables us to assume that Cy = (0,79) and Py = (0,0);
refer to Figures 1-2 (left). Denote z; = (u;,v;),0 < i < 2. Then, to ensure fairness, we restrict vo = 0
since the initial curvature is positive. Two cases of an S-shaped and a C-shaped transition curves are
now considered separately.
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Figure 1: An S-shaped quintic Bézier transition curve.

2.1 S-Shaped Transition Curve

Here we consider an S-shaped transition curve z(t) of the form (2.1). Then, G? transition requires

Lemma 2.1

3
U
Vo = 0, Vg = 0, v = ﬁ, Ug = )\UO (27)
where vy = vy = 0 gives § = —.
Proof. First, note v = 0. Next, we only to note
4v; 1 4vq 1
0 —_ — —, ]_ = —— = —— 2.8
w0 (=5) =5 s (=-1) =1 2.3
Letting u; = mug, Lemma 2.1 gives
u2
zZg = Uo(l, O), Z1 = Ug <m, 40) , Z9 = UOA(LO) (29)
To

Theorem 2.1 (r > rg + r1): Assume that 3/10 < X\ < 1. FEach value of m(> 3/4) determines a G*
quintic S-shaped transition curve of the form (2.1) with (2.9) between the two circles with no interior
curvature extremum. It is free of loops and cusps and has a single inflection point, i.e., it is a pair of two
spirals with monotone decreasing curvature which changes its sign from positive to negative.

Proof. First, note z(1) = (p, q)

2 4 4

Ug Ug 2 2 Uq
=——<¢<—— +8(2 3m(14+X)+3+A4+3A = 4m + 3 + 3\ 2.10
p 120{ 2 +82m? +3m(1+3) + >}, 1= Gope (4m+3+3) (2.10)

With p = ug/(25r2), the center C1(= (c,d))(= z(1) — r1(0,1)) is given by

c= r‘;\f (16m> 4+ 24(A + 1)m + 24X° + 8A+ 24 —25p) , d = % (20pm + 15pA + 15p — 12A%) (2.11)

||[C1 — Col| = r gives the cubic equation f(p) = 0, where

3
o) = aip’ (2.12)
1=0

with
az = 625r5, az = 1005 {8m® 4+ 12(1 + A\)m — 3A> 4 14X — 3}
a1 = 32rg {8m* + 24(1 + N\)m® + (42 + 44X + 42)%)m? (2.13)
—24(1 — 2X — 2X% + \¥)m — 27A* — 333 + 38)\% — 33\ — 27}
ap = =576 {r* — (1 + X*)?} (= =576 {r* — (ro + r1)*})
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Since the signs of coefficients (as, as, a1, a9) are (+,+,7, —), combine Descartes’ rule of signs and inter-
mediate value of theorem to obtain that the above cubic equation has a unique positive root.
Now we examine the shape of the transition curve. First, the second component y(t) of z(t)(=
(z(t),y(t)) satisfies
2
s 4 2ms + A) (>0), t= 1
ro(1+ s)* 1+s

which implies that the curve is free of loops and cusps since “loop” means z(a) = z(5),0 < a < 8 < 1,
i.e., ¥/ (t) has at least one zero and “cusp” means 2z’(t) = 0 for some ¢ € (0, 1), i.e., y'(¢) has at least one
zero. Now we show that the transition curve has monotone decreasing curvature. A symbolic manipulator
Mathematica gives with t =1/(1+5),0 < s < 00

w(t) (_ {2(t) + ()} m’(t)) _ 1250393/
2 4(1+5)®
— (35" — 5As® — 5Xs +3)%)} + 25psp(s)] (2.15)

y'(t) = ol (2.14)

[4(s® + 2ms + \) {2mpu(s)

where for 3/10 < A <1,

3 7(16 —5V7
n(s) (=28 — s = As+2)) > 25° — s> — s+ E > (To\f)(z 0.0718) > 0 (2.16)

For the term in the braces of (2.15), note m > 3/4 to obtain
2{2mpu(s) — (3s® — 5As® = 5As +3XA%)} > (10A — 3)s” + TAs + s+ 6A(1 — A) > 0 (2.17)

Hence, «/(t) < 0 for 3/10 < X < 1, i.e., the transition curve is a spiral whose curvature is monotone
decreasing and has a single inflection point. This completes the proof of Theorem 2.1.

Here we note that the coefficient 4(4m — 3) of s° (the highest term in the brackets of (2.15)) must
be nonnegative for the spiral transition curve. Therefore, m > 3/4 is necessary and m = 3/4 means
k’(0) = 0 since then the numerator and the denominator is quartic and quintic in s, respectively.

2.2 (-Shaped Transition Curve

Figure 2: A C-shaped quintic Bézier transition curve.

Now we consider a C-shaped transition curve z(t) of the form (2.1). As in the S- shaped one,
assume Co = (0,79) and Py = (0,0). Then, G? transition requires

Lemma 2.2

ug

= m, v1 = uq tanf, us = ugcos20 (2.18)

vg =0, wvs=wustan20, uy
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Proof. Since the angle from T to T; is 6, we obtain
v1 = uj tan @ (2.19)

Slopes of T3 and Ty are given by (ugvy + u1v2)/(uius — vive)(= m3) and 2ugve/((u3 — v3)(= my),
respectively. Therefore, note that the angle from T3 to Ty is € to get

(myg —m3)/(1 4+ m3my) = tan b, ie., — ugvy + u1vy = (ujug + v1v2) tan d (2.20)
from
v1 = ujtanf, vy = ustan 26 (2.21)
Next,
4uq tan @ 1 4uq cos? 20 tan @ 1
x(0) (: 3> =—, k(1) (: —_— | = — (2.22)
Ug To Uy 1
from which follow 5
U
= 26 =92 2.2
Ug ’LLO)\ COS , uy 47‘0 tand ( 3)

Then, note that the angles between P; — P,_; and P;1; — P;, 1 < i < 4 are all 6; refer to Figure 2.
Letting u; = mug and p = tan?#, Lemma, 2.2 gives

2/mropt/ 4\
2o = 2y/mrop'/4(1,0), 21 = 2my/mrop/*(1,/p), 22 = %(1 = 0,2v/p) (2.24)

Theorem 2.2 (r > ro—r1): Assumer < 15.37ro; refer to Figures 3-4. Then, each value of m(€ [1,3.22])
determines a G* quintic C-shaped transition curve of the form (2.1) with (2.24) between the two circles
with a single interior curvature extremum. The curve is free of inflections, loops and cusps, i.e., it is a pair
of two spirals with starting monotone decreasing curvature and ending monotone increasing curvature.

Proof. Note

4(=1+p)\/p 1—6p+p°
(1+p)2 7 (1+p)?

Ci=Ps+nr ( > (= P54+ r1 (—sindb, cos 40)) (2.25)

A symbolic manipulator gives with C; = (¢, d)

15(1 + p)Pc = 4ro\/p [2(1 = p)(1 + p)*m® + 3(1 + p) {1 + p+ A(1 — 3p)} m?
{31+ p)* + A1 = p?) +3X2(1 — 6p + p*) } m — 15X*(1 — p)]

(2.26)
15(1 + p)2d = 1o [16p(1 + p)*m® +12p(1 + p) {1 + p+ A(3 — p)} m®
+8Xp {1+ p+6A(1 — p)}m + 15X3(1 — 6p + 6p%)]
Condition ||C; — Cp|| = r gives the equation f(p) =01in p (= %) as
0
flp) = 295 1+p 22501 1 )2 Zazp —r? (2.27)

where the coefficients are given by
as = 64m°, ay = 16m* {16m” + 12(1 + \)m — 3\* — 14X — 3}
az = 8m? {48m®* + 72(1 + \)m® + 6(5 — 2\ + 5A%)m?
—24(1 44X + 427 + X)m — 27 + 33X + 38\7 + 33X% — 27}
ag = 256m° 4+ 576(1 4+ \)m® + 48(13 + 10X + 13\%)m*
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—348(1 + A+ A2+ X3)m® — 16(27 + 45\ + 10672 + 45)3 + 2701 )m?
—240A(1 — 6\ — 6A7 + X¥)m + 225(—1 + \3)?
ay = 64mS +192(1 + \)m® + 16(21 + 22X + 212%)m*
—192(1 — 2X — 202 + A¥)m® — 8(27 + 123X — 3807 +123)\3 + 270" )m?
—240\(1 + 6 + 6% + X*)m + 450(1 + 61% 4+ \9)
225

=07 (= By

Intermediate value of theorem assures the existence of the positive root since
f0) (= (ro—r1)*=r?) <0, f(oo) =00 (2.28)

To show the uniqueness of the positive root, note
5

/ _ 8T2 %
') = o548 " PE ; bip (2.29)

where to check the signs of the coefficients b;,1 < i < 5 we use nonnegative u(=m — 1),

bs = 24m®, by = 4m* {35 — 2X — 3A\% + 4(16 + 3\)u + 26u° }
by = m? {299 — 19X — 520 + 9A® — 27A" 4 4(299 + 40X — 2127 — 6A%)u
+2(783 + 190X + 3A\%)u? + 8(109 + 21\)u® + 176u* }
by = 3m? {99 — 3\ — 2827 + 9N — 27A* + 12(37 + 8\ — 3A% — 2X\%)u
+6(89 + 34X + 5A%)u? + 24(11 + 3\ )u® + 48u*}
by = (1 — A)(137 + 102X + 15002 + 111A3) + 2(507 + 164X — 180A% + 1051% — 96A*)u
+3(809 + 389\ — 7T0A% — 91X3 — 272 )u? + 8(338 + 170\ + 39\ — 9N*)u?
+2(777 + 338X + 57A%)u* + 24(19 + 5\)u® + 56u°
bo = 8mS + 24(1 + N\)m® + 2(21 + 22X + 21A%)m* — 24(1 + \)(1 — 3X + A\?)m3
—(27 4 123X — 382% + 123X3 4 2703)m? — 30A(1 4+ \)(1 + 5 + A*)m + 45073

Note 0 < A <1 and u > 0 to easily obtain
b; >0,1<i<5h (2.30)

Hence, if by > 0, then the positive root of f(p) = 0 is unique. If by < 0, then f’(p) has a single positive
zero where f’(p) changes its sign from — to +. Therefore, f(0) < 0 and f(c0) = oo mean the unique
positive root of f(p) = 0.

Now we examine the shape of the transition curve. First, with t = 1/(1 + s)

~ 16mrop {2Xs +m(s> + A)(1+p)}

uw(t)v'(t) — o' (t)v(t) = (EBEEY) (>0) (2.31)

from which the curve is free of inflection points. Next, “cusps” require z’(a) = 0,0 < a < 1, i.e.,
u(a) = v(a) = 0. On the other hand, with t =1/(1 + s)

_ i op A+ ms(1+ p)}
- ) (> 0) (2.32)

v(t)

from which the curve is free of cusps. Thirdly, For no loops, note

3

4dmr, )
v = HaT 5)5(2[1)+ p)? ;aiy >0 (233)
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where

az = 30m(1 +p)?, ag =10(1+ p) {2\ +m(3 +4m)(1 + p)}

a1 = 5(1 + p) [4m® + 3m + 9ImA + 2\ + m {dm + 3(1 — \)} p]

ap = 4m? 4 3m 4+ 9mA + 2\ + 1207 + 2(4m? + 3m + 3mA + X — 67%)p +m {4m + 3(1 — \)} p?
If the curve had loops, there would exist at least two « and 8 (0 < o # § < 1 ) such that z(a) = z(8),
ie, z(a) = 2(8),y(a) = y(B) from which follows

2(0) _ a(f)

yl@)  y(B)
Therefore, for no loops, it suffices to show that % is monotone decreasing or z'(t)y(t) — z(¢)y'(t) < 0.
A symbolic manipulator gives

,0<a#p<1 (2.34)

16m2r8p3/2
15(1 + 8)3(1 + p)?

' (t)y(t) —z(t)y'(t) = — > bis' (< 0) (2.35)
=0

where all the following coefficients b;,0 < i < 6 are positive for m > 1

be = 30m(1+p)*, bs =20(1+ p) {4m> + 3m + 2X + m(4m + 3)p}
by = 5(1 + p) {8m® + 28m* + 9m + 31mA + 14X + m(16m> + 28m + 9 — 5A)p + 8m?p*}
by = 4 {10m® + 6m>(4 4 5A) + m(3 4+ 59\) + 12A(1 + A) } + 8 {15m> + 6m>(4 + 5))
+m(3 + 23X) + 6A(1 — A)} p+ 4m {30m” + 6m(4 + 5A) + 3 — 13X} p* + 40m>p°
by = 2{2m>(3 4 5X) + 12m° (1 + 4\) + mA(75 + 32X) + 6A(1 + 6)) }
+4 {3m*(3 4 5X) + 12m(1 4 4X) + mA(27 + 14X) + 3A(1 — 6A) } p
+2m {6m>(3 + 5A) + 12m(1 + 4X) — A(21 +4X) } p° + 4m3(3 + 5A)p°
by = 4X {2m® + m*(6 + 4X) + m(9 + 10A) + 2X(6 + A) } + 8A {3m® + m?(6 + 4))
+m(3+4X) — A(6 — N)} p + 4mA {6m> + m(6 + 4X) — 3 — 2))} p* + 8m>\p®
bo = A {4m* +3m(3+ A) +2(6 + A\)} +2X* {4m® + 3m(1+ A\) + A =6} p
+mA? {dm + 3(\ — 1)} p?

Therefore, the curve is free of loops. Finally we show that the curve has a single curvature extremum. A
symbolic manipulator Mathematica gives with t = 1/(1+s),0 < s < 00

u2 02 351 m2r2 3/2
w(t) (Z{ (t) + 2@)} (t)>=‘(16+4p 1p+8 {Zcz } 2.36)

=0

where to check the signs of the coefficients ¢; > 0,7 = 5,4, 3,0 we again use nonnegative u(=m — 1)

=(1+p){L=A+p+5(1+pu+4(l+pu}(>0)
ca = (14p) [p{=5A+8(1+p)} + (8 + TA +32p — 5Ap + 24p%)u
+8(2 4 5p 4 3p%)u” + 8(1 + p)*u’] (> 0)
cs =2 [3)\*(1 —p) — A(1 —10p — 11p*) — 2(1 + p)*
—(14+p) {6(1 4 p)2 = A(11+23p)} u — 6(1 — 2X + p)(1 + p)%u? — 2(1 + p)>u’]
co = 4x{2m® — 12m® + )\(13m —3) + (6m® — 24m? + 14mA\ + 3)) p
+m(6m? — 12m + \)p® 4+ 2m3p }
c1 = M(=8m3 +8m?\ — TmA + TA?) 4+ A\(=24m> 4 16m*\ — 2mA + 7A\%)p
FA(—=24m3 + 8m2\ + 5mA)p® — 8m3A\p?(< 0)
co=—N(1+p) {41 = X) + p(4 —3X) + (8 = 3A)(L + p)u + 4(1 + p)u’} (< 0)
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Descartes’ rule of signs implies that ¢o < 0 is a sufficient condition for the curvature to have a single
extremum, i.e., a local minimum. From now on, we assume that 1 < m < 3.22 where 3.22 is a necessary
condition for the following py to be positive for all A € (0,1]. Note that 2m? — 12m? + A\(13m — 3) <
2m3 — 12m? + 13m — 3 < 0 to obtain a sufficient condition for cs < 0:

—6m? +12m — A+ ¢(m, A
0<p< AR () (2.37)

with

B(m, \) = /—12m* + 48m3 + 4(36 — 25)\)m2 — 48 m + A2 (2.38)

Hence, f(pg) > 0 gives a bound for r/rg

r/ro < /N(m,\)/D(m,\)

where

N(m,\) = =768(11 + 3\)m? + 64(1881 + 542X + 81A%)m® — 384(1107 + 578\ 4 160A? + 613 )m”
—32(16065 — 23160\ — 6614\ — 21727 + 81A*)m® — 96(—35442 + 2553\ + 2268\ + 2453)\°
+90A*)ym® — 2(32043 + 309516\ + 3484422 + 287473 — 16996A* 4 2268)\° + 751%)m*
+144(—1296 + 3207\ + 10822)2 4 4608\3 — 2270A* 4 597A%)m> — 72(—450 — 822\ + 1497)\>
46763 4 2098\* — 11445 — 3458 4 150A7)m? — 36A(225 + 162X\ — 218\% — 862)\3 — 274)\*
H+166X° + 2250%)m 4+ 9X2(25 4 12X — 162 — 7403 — 16A% + 12)\° + 25)5)

— {256m® — 384(9 + A\)m” + 32(123 + 58\ — 21A%)m® + 192(482 + 67 + 44A* 4 2A%)m®

—48(5991 + 2195\ + 10082 + 953 — 9A")m? + 144(204 + 1907\ + T70A? + 267\ — 56A%)m?

+18(889 — 1560\ — 5232)\% — 34263 4+ 960\* — 120\° + 250%)m? — 36(75 + 90\ — 122)\2

— 418X — 178" 4+ 94A\° + 7T5A%)m + 9A(25 + 12X — 16A% — 74X® — 16A* + 12X° + 25)%) } $(m, A)
D(m,\) = 22—5 {2m? — 12m + A — ¢(m, A)}*
This completes the proof of Theorem 2.2.

Figure 3: Graph of upper bound for r/rg for 0 < A < 1,1 <m < 3.

Remark 1[Figure 4 (left)]: From above, a restriction is derived on the magnitude of the ratio r/rq
independent of A. ¢(m, ) is monotone decreasing with respect to A, and so

—6m? +12m — 1+ ¢(m, 1
P (m, 1) (=p1) < po (2.39)
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f(p1) > 0 gives r/ro < \/N(m,1)/D(m,1). Mathematica gives r/ro < 15.37 whose maximum occurs at
about m = 2.52.

15 8
12.5
10 °
7.5 4
5
2.5 2
1.5 2 2.5 3 0.2 0.4 0.6 0.8 1

Figure 4: Graphs of upper bounds for r/rg for 1 < m < 3.22, A = 1(left) and for 0 < A < 1,m =1 (right).

Remark 2[Figure 4 (right)]: For m = 1, the above inequality (2.37) is

0<p<

Hence, f(p2) > 0 gives r/rg < /N(1,\)/D(1, \).

(= p2) (2.40)

Figure 5: Locus of the center of smaller circle for S-case (left) and C-case (right).

Finally we give numerical results on the locus of the center of smaller circle when (g, r1,7) = (1,0.5, 2)
for S—transition curves in Figure 5 (left) and (rg,r1,r) = (1,0.5,3) for C—transition curves in Figure
5 (right). Locus of the center is shown as dotted thick arc of the circle with the center (0,7¢) and the
radius 1.

3 Numerical Examples

This section gives two numerical examples to assure our theoretical analysis. The figures with Py
fixed on the larger circles show the effect of parameter m for r¢ = 1 where (r1,r) = r0(0.5,2) and
(r1,7) = 1r0(0.5,3) for S and C, respectively. Figure 6 show S-shaped curves for (m = 3/4,1) and Figure
7 show C-shaped curves for (m = 1,4/3) with their curvature plots. Case m = 1 is shown with thick
curves. Figure 8 is an exceptional case of [13] with (rg,r1,m) = (1,0.5,4/3) for r = 6 (left) and r = 10
(right).
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N o = o

Figure 6: Graphs of z(¢) (left) with their curvature plots x(t) (right), 0 <t < 1.

Figure 7: Graphs of z(t) (left) with their curvature plots x(t) (right), 0 <t < 1.

4 Conclusion

Use of a fair PH quintic curve for family of G2 transition curves between two circles has been demon-
strated. Such blending is often desirable in CAD, CAM and CAGD applications. We presented a very
simple algorithm offering more flexible constraints than [13]. To guarantee the absence of interior curva-
ture extremum (i.e., spiral segment) in S-shaped transition curve, the ratio of the larger to the smaller
radii of the given circular arcs is constrained to less than or equal to (10/3)% ~ 37 (A > 3/10) for m > 3/4.
On the other hand, the ratio must be less than 8 (A > 1/2) in [13] for m = 3/4. To guarantee a single
curvature extremum (at which the curvature magnitude is a minimum) for a C-shaped transition curve,
the distance between the centers of the circular arc is constrained to less than or equal to 15.37 times
the larger radius (r < 15.37rg) for 1 < m < 3.22 where as in [13], it is only 3.3 times the larger radius
(r < 3.3rg) for m = 1. So our constraints are less restrictive, more reasonable and comfortable for
practical applications.
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Figure 8: Graphs of z(t) with (ry,r) = r(0.5,6) (left) and r¢(0.5,10) (right).

References

Farin, G. 1997. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.
NewYork : Academic Press 4th edition.

Gibreel, G. M., S. M. Easa, Y. Hassan, and I. A. El-Dimeery 1999. State of the art of highway
geometric design consistency. ASCE Journal of Transporation Engineering 125(4):305-313.

Habib, Z. and M. Sakai 2002. G? two-point hermite rational cubic interpolation. International
Journal of Computer Mathematics 79(11):1225-1231.

Habib, Z. and M. Sakai 2002. Quadratic and t-cubic spline approximations to a planar spiral.
Scientiae Mathematicae Japonicae Online 7(11):107-114.

Habib, Z. and M. Sarfraz 2001. A rational cubic spline for the visualization of convex data. 744-748
USA. Proceedings of IEEE International Conference on Information Visualization-IV'01-UK : IEEE
Computer Society Press.

Hoschek, J. and D. Lasser 1993. Fundamentals of Computer Aided Geometric Design (Translation
by L.L. Schumaker). MA : A. K. Peters, Wellesley.

Sakai, M. 1999. Inflection points and singularities on planar rational cubic curve segments. Computer
Aided Geometric Design 16:149-156.

Sakai, M. 2001. Osculatory interpolation. Computer Aided Geometric Design 18:739-750.
Sakai, M. and R. Usmani 1996. On fair parametric cubic splines. BIT 36:359-377.

Sarfraz, M. 2002. Fitting curves to planar digital data. 633-638 USA. Proceedings of IEEE Inter-
national Conference on Information Visualization-IV’02-UK : IEEE Computer Society Press.

Walton, D. J. and D. S. Meek 1999. Planar G? transition between two circles with a fair cubic
Bézier curve. Computer Aided Design 31:857-866.

Walton, D. J. and D. S. Meek 2001. Curvature extrema of planar parametric polynomial cubic
curves. Computational and Applied Mathematics 134:69-83.

Walton, D. J. and D. S. Meek 2002. Planar G? transition with a fair Pythagorean hodograph quintic
curve. Computational and Applied Mathematics 138:109-126.



