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Abstract

The Inoue algorithm is a superb method for solving a system of Boolean polynomial equations and
it has been successfully applied to solving Sudoku puzzles. Recently several works have been done
on the evaluation of the level of Sudoku puzzles by this method.

In our preceding paper, we defined the Inoue invariant of a system of Boolean polynomial equa-
tions, which measures the difficulty of solving such a system by the Inoue algorithm. But it does
depend on the given linear order on the set of variables so that it is desirable to have an invariant of
such a system which does not.

The purpose of this paper is firstly to define two kinds of new invariants of such a system, the
virtual and the computable Inoue invariant, determined only by the system, and secondly to show by
experiments that, when applied to the system arising from a Sudoku puzzle, these invariants are good
indicator of the difficulty of the Sudoku puzzles.

1 Introduction
The Inoue algorithm [5] is an excellent method for solving a system of Boolean polynomial equa-
tions and it has been applied for solving Sudoku puzzles ([4, 7]). Recently several research works
have been done on the evaluation of the difficulty of (or giving hierarchy to) Sudoku puzzles by this
method ([6, 8, 14]). The purpose of this note is firstly to define two new invariants of a Boolean
polynomial ideal by modifying the Inoue invariant defined in our preceding paper [10]. Secondly,
we show by experiments that our new invariant is a fairly good indicator of the difficulty of the
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puzzles for humans. We also compare our new invariants with the known evaluation method for
Sudoku puzzles.

More precisely, in our preceding paper [10], we defined the Inoue invariant of a system of
Boolean polynomial equations, which measures the difficulty of solving such a system by the Inoue
algorithm. We then classified the Inoue invariant of the puzzles of Sudoku type of smaller size,
namely the 4-doku puzzles and the diagonal 5-doku puzzles. The Inoue invariant in [10] is a good
indicator of the difficulty of solving a given system of Boolean polynomial equations, but it has a
defect that it does depend on a given linear order on the set of variables.

In this paper, we will define two kinds of new invariants, the virtual and the computable Inoue
invariant, determined only by a given system by modifying the definition of the Inoue invariant.
The virtual Inoue invariant is defined as the minimal Inoue number of all the Inoue numbers ob-
tained by applying the possible generalized Inoue algorithms to the system. The virtual Inoue
invariant is theoretically satisfactory but hard to compute so that we also define the computable
Inoue invariant, which approximates the virtual Inoue invariant well and is actually computable.

We have implemented the program for computing the computable Inoue invariant on the com-
puter algebra system Magma [1] (we have put it in our website http://www.r.dendai.ac.jp
/˜nakano/research.html). We then show by experiments that these new invariants indicate
the difficulty of Sudoku puzzles effectively when applied to the systems arising from the Sudoku
puzzles.

The contents of this paper are as follows. In Section 2, we review briefly the Boolean Groebner
bases, the Inoue algorithm and the Inoue invariant after [5, 8, 10]. In Section 3, we define the virtual
and the computable Inoue invariant of a given Boolean polynomial ideal. In Section 4, we show
by experiments that the computable Inoue invariant is a good indicator of the difficulty of Sudoku
puzzles. In section 5, we compare our computable Inoue invariants with the known evaluation
methods for Sudoku puzzles ([6, 8, 14]) , especially the b-rank and s-rank defined in [8]. Finally in
Section 6, the results obtained are summarized.

We finally note that part of the results in this paper are surveyed in [11] and this work was
supported by JSPS KAKENHI (23540057).

Acknowledgment: we thank the referees for teaching us the preceding works on this topic such
as [4, 6, 7, 8, 14]. We are also grateful to Prof. Y. Sato for communicating some useful information
to us on this work.

2 Preliminaries
In this section, we first summarize some basic facts on Boolean Groebner bases of ideals in a
Boolean polynomial ring. For more details, see [12, 13, 15]. We then recall the Inoue algorithm
[5] and the Inoue invariant [10] briefly.

2.1 Boolean Groebner bases
A Boolean ring B is a commutative ring with an identity such that any element a ∈ B satisfies
a2 = a. For a Boolean ring B, if we define

a ∨ b := a + b + ab, a ∧ b := ab,¬a := 1 + a,

then (B,∨,∧,¬) is a Boolean algebra. Conversely, if (B,∨,∧,¬) is a Boolean algebra, then by
defining

a + b := (a ∧ ¬b) ∨ (¬a ∧ b), a · b := a ∧ b,
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(B,+, ·) becomes a Boolean ring. Thus Boolean rings and Boolean algebras are the same concept.
For example, let Xm := {1, 2, . . . ,m} be the set with m elements and Bm the set of all subsets of

Xm. Then Bm is a Boolean algebra with the "join, meet, complement" operations of subsets. Thus
Bm is a Boolean ring with the addition (symmetric difference) and multiplication (meet) as defined
above. Conversely, any finite Boolean ring is isomorphic to Bm for some natural number m by the
Stone representation theorem. There is a natural ring isomorphism Bm � (F2)m, where F2 := {0, 1}
is the field with 2 elements (the addition and multiplication in (F2)m are defined componentwise).

Let B be a Boolean ring and B[x] := B[x1, . . . , xn] the polynomial ring over B with n variables.
Given a monomial order on B[x], for a polynomial f ∈ B[x], we denote by LT( f ),LM( f ) and LC( f )
the leading term, the leading monomial and the leading coefficient respectively. Thus LT( f ) =
LC( f )LM( f ) holds.

For an ideal I ⊂ B[x], we denote by LT(I) the set of leading terms of the elements (except 0) in
I. We now define a Groebner basis of an ideal in B[x].

Definition 1 (Groebner Bases)
Given a monomial order on B[x], let I ⊂ B[x] be an ideal and G := {g1, . . . , gs} ⊂ I a finite subset
of I. We say G is a Groebner basis of I if ⟨LT(I)⟩ = ⟨LT(g1), . . . ,LT(gs)⟩ holds.

We note that a division algorithm similar to (but slightly different from) the one in the case
where the coefficient ring is a field holds in B[x]. Based on this division algorithm, the Buchberger
criterion and algorithm hold with slight modifications, and most of the results in Section 2 of [2]
hold. We next define the reduced Groebner bases. We denote by f

G
the remainder of division of f

by G.

Definition 2 (Reduced Groebner Bases)
Let G be a Groebner basis of an ideal I ⊂ B[x]. G is called reduced if for any g ∈ G, gG\{g}

= g
holds.

Since reduced Groebner bases are not unique for a given ideal, we now define the stratified
Groebner bases.

Definition 3 (Stratified Groebner Bases)
Let G be a reduced Groebner basis of an ideal I. G is called a stratified Groebner basis if LM( f ) ,
LM(g) holds for any f , g ∈ G, f , g.

The following theorem shows that a stratified Groebner basis is the canonical basis of a given
ideal.

Theorem 4
Fix a monomial order on B[x]. For a given finitely generated ideal I ⊂ B[x], a stratified Groebner
basis of I exists and it is determined by I uniquely.

For the existence, we can construct the stratified Groebner basis of a given finitely generated
ideal by the Buchberger algorithm followed by the reduction and stratification process. For the
actual computation of the stratified Groebner bases in the case of B = (F2)m, we use the compo-
nentwise method (see [13, Theorem 22]).

We now turn to the Boolean Groebner bases. Since B[x] itself is not a Boolean ring, we set

B(x) = B(x1, . . . , xn) := B[x]/⟨x2
1 − x1, . . . , x2

n − xn⟩

and call B(x) a Boolean polynomial ring over B. We note that B(x) is a Boolean ring and any ele-
ment f (x) ∈ B(x) can be written uniquely as f (x) =

∑
α cαxα where cα ∈ B and α = (α1, . . . , αn), αi ∈
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{0, 1}. We call this expression the canonical representation of f ∈ B(x). Given a monomial order
on B[x], we can define LT( f ),LM( f ) and LC( f ) of f ∈ B(x) by using the canonical representation
of f .

Definition 5 (Boolean Groebner Bases)
Fix a monomial order on B[x]. For a given ideal I ⊂ B(x), a finite subset G = {g1, . . . , gs} ⊂ I is
called a Boolean Groebner basis of I if ⟨LT(I)⟩ = ⟨LT(g1), . . . ,LT(gs)⟩ holds.

The division algorithm works also in B(x) and we can define the reduced and stratified Boolean
Groebner bases as in Definition 2 and 3. Then the existence and uniqueness of the stratified Boolean
Groebner bases hold too.

We can compute the Boolean Groebner bases as follows. Let I = ⟨F⟩ ⊂ B(x) be a given ideal
with a set of generators F. Compute a Groebner basis G of ⟨F ∪ {x2

1 − x1, . . . , x2
n − xn}⟩ in B[x].

Then G′ := G \ {x2
1 − x1, . . . , x2

n − xn} is a Boolean Groebner basis of I. If G is stratified, then so is
G′.

We finally refer to the Boolean Hilbert Nullstellensatz. For an ideal I ⊂ B(x), let V(I) := {a ∈
Bn | f (a) = 0 for any f ∈ I} be the affine variety defined by I.

Theorem 6 (Boolean Hilbert Nullstellensatz)
Let I ⊂ B(x) = B(x1, . . . , xn) be a finitely generated ideal.
(i) V(I) = ϕ⇐⇒ I contains a non-zero constant (weak form).
(ii) Assume V(I) , ϕ. Then f (x) ∈ I ⇐⇒ for any a ∈ V(I) f (a) = 0 holds (strong form).

2.2 The Inoue algorithm and the Inoue invariant
We will first explain the Inoue algorithm for computing the singleton set solutions of a system of
Boolean polynomial equations ([5]). We follow the method based on minimal polynomials and
semi-solution polynomials ([7, 8]) rather than the original one based on almost solution polynomi-
als. We will then review the Inoue invariant of a Boolean polynomial ideal after [10].

We work in the Boolean polynomial ring (F2)m(x) = (F2)m(x1, . . . , xn). For an ideal I ⊂
(F2)m(x), we set

VS(I) := {(a1, . . . , an) | ai ∈ {e1, . . . , em}, f (a1, . . . , an) = 0 for any f ∈ I},

where e1 := (1, 0, . . . , 0), . . . , em = (0, 0, . . . , 0, 1) ∈ (F2)m. Thus VS(I) is the set of singleton set
solutions and the Inoue algorithm computes it effectively.

The Inoue algorithm is based on the concept "solution polynomials" and "semi-solution poly-
nomials" contained in the ideal. In the following, for an element a = ei1 + . . . + eil (1 ≤ i1 < . . . <
il ≤ m) in (F2)m, we say the cardinality of a is l and denote it by ♯a = l.

Definition 7 (Solution Polynomial and Semi-solution Polynomial)
Let f ∈ (F2)m(x) be a univariate Boolean polynomial.
(i) If f is of the form f = x j + ek for some j, k, f is called a solution polynomial.
(ii) If f is of the form f = ax j + ek (a ∈ (F2)m) with a · ek , 0, then f is called a semi-solution
polynomial of type-a. A solution polynomial g := x j + ek is called the one associated with the
semi-solution polynomial f and denoted by Asp( f ).
(iii) If f is of the form f = ax j for some a ∈ (F2)m with ♯a = m− 1, then f is called a semi-solution
polynomial of type-b. Let ek be the unique singleton element such that a · ek = 0. Then the solution
polynomial x j + ek is called the one associated with the semi-solution polynomial f and denoted
by Asp( f ).
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For a subset S ⊂ (F2)m(x), we denote by SemiSol(S ) the set of semi-solution polynomials
contained in S .

If a solution polynomial f = x j+ek is contained in an ideal I, then the the value of the variable x j

is determined to be ek. We also note that if a semi-solution polynomial f with the Asp( f ) = x j + ek

is contained in the ideal, then the value of x j must be ek since we are computing VS(I) (more
precisely VS(I) = VS(I + ⟨x j + ek⟩) holds). We next define a contradiction polynomial.

Definition 8 (Contradiction Polynomial)
Let f ∈ (F2)m(x) be a univariate Boolean polynomial. If f is of the form f = a (a is a non-zero
constant), f = x j or f = ax j + b (a, b ∈ (F2)m and ♯b ≥ 2), then f is called a contradiction
polynomial.

For a subset S ⊂ (F2)m(x), we denote by Contra(S ) the set of contradiction polynomials con-
tained in S .

If a contradiction polynomial f is contained in the ideal I, then it is clear that VS(I) is empty.
We now define the basic closure of an ideal, which is the main ingredient of the Inoue algorithm.

Definition 9 (Basic Closure)
Let I ⊂ (F2)m(x) be an ideal. We define the operation Ψ0 by Ψ0(I) := I + ⟨Asp(SemiSol(I))⟩,
where Asp(SemiSol(I)) = {Asp( f ) | f ∈ SemiSol(I)}. Namely, Ψ0(I) is the ideal obtained from I
by adding all the solution polynomials associated with the semi-solution polynomials in I. Then
we have an ascending ideal chain

I ⊂ Ψ0(I) ⊂ (Ψ0)2(I) ⊂ . . . ⊂ . . . .

Since (F2)m(x) is finite, there exists m such that (Ψ0)m(I) = (Ψ0)m+1(I) = . . .. We set BasicClosure(I) :=
(Ψ0)m(I) for such m and call it the basic closure of I.

For the computation of the basic closure of an ideal, we need to know the semi-solution poly-
nomials contained in the ideal. For that, we introduce the minimal polynomial of each variable.

Definition 10 (Minimal Polynomial)
Let I ⊂ (F2)m(x) be an ideal such that V(I) , ϕ and xi an variable. The ideal I ∩ (F2)m(xi) is a prin-
cipal ideal of (F2)m(xi) and can be written as I ∩ (F2)m(x) = ⟨h(xi)⟩ for some h(xi) ∈ (F2)m(xi). The
univariate polynomial h(xi) is determined by I and xi uniquely and called the minimal polynomial
of xi with respect to I.

Minimal polynomials are easily computed from the stratified Boolean Groebner basis of I as
follows:

Proposition 11
Let I be an ideal of (F2)m(x) with V(I) , ϕ. Fix a monomial order on (F2)m(x) and let G be the
stratified Boolean Groebner basis of I.

Then, for each variable xi, there exists a non-zero minimal polynomial h(xi) of xi with respect
to I if and only if G contains a polynomial g = axi +b1t1 + . . .+bltl + c where LM(g) = xi, t1, . . . , tl
are distinct terms (, 1) and a, b1, . . . , bl, c ∈ (F2)m such that a , b1 ∨ . . . ∨ bl.

Moreover, if such g exists, the minimal polynomial h(xi) has the following form:

h(xi) = a(1 + b1 ∨ . . . ∨ bl)xi + c(1 + b1 ∨ . . . ∨ bl).
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The following proposition enables us to compute the basic closure of an ideal by means of the
stratified Boolean Groebner basis and the minimal polynomials of the ideal.

Proposition 12
Let I ⊂ (F2)m(x) be an ideal and G the stratified Boolean Groebner basis of I with respect to a
monomial order. Then I contains a non-zero constant if and only if G does.

Further suppose V(I) , ϕ and let M be the set of n minimal polynomials of each variable xi

(1 ≤ i ≤ n) with respect to I. Then the following assertions hold:
(i) Contra(I) , ϕ if and only if Contra(M) , ϕ.
(ii) If Contra(I) = ϕ, then I + ⟨Asp(SemiSol(I))⟩ = I + ⟨Asp(SemiSol(M))⟩ holds.

The proof of this proposition is easy and we omit it.
Now we will explain the idea of the Inoue algorithm. We call an ideal J a maximal ideal

if J has a set of generators consisting of n solution polynomials of each variable, namely, J =
⟨x1 − ei1 , . . . , xn − ein⟩.

Let I be an ideal. Enlarge the ideal by setting J := BasicClosure(I). At this point, J contains no
semi-solution polynomials and thus we cannot go further. So we take the "try and error" method.
Namely, choose one variable, say xi, among the ones whose values are not determined yet, and add
to J the solution polynomial of the form xi + e j, where e j is a possible value of xi (see Algorithm
13 below for the precise definition of this). Then the new ideal J′ := J + ⟨xi + e j⟩ may contain
several semi-solution polynomials. Thus we can take the basic closure of J′ again and go further
until we reach a maximal ideal.

We state the procedure of the Inoue algorithm as follows.

Algorithm 13 (Inoue Algorithm)
Fix a linear order on the set of variables {x1, . . . , xn} and let I ⊂ (F2)m(x) be an ideal. Set L := {}
(an empty set). We will put a singleton set solution in L in order.
(i) If Contra(I) , ϕ, then set L := L ∪ {} (no solution is added to L).
(ii) If Contra(I) = ϕ, then redefine I := BasicClosure(I).
(iii) If Contra(I) , ϕ, then L := L ∪ {}. If Contra(I) = ϕ , we have 2 cases.
(a) If I is a maximal ideal, then L := L ∪ {I} (we get a singleton set solution I).
(b) Else let x j be the least variable among the undetermined ones (the linear order on the set of
variables is used only for this), and {ek1 , . . . , ekp } the possible values of x j. Here we say {ek1 , . . . , ekp }
are the possible values of x j if the minimal polynomial h(x j) of x j with respect to I is of the form
h(x j) = (1 + ek1 + . . . + ekp )x j. For each l (1 ≤ l ≤ p), redefine I := I + ⟨x j + ekl⟩ and go to (ii).
(iv) The final output Inoue(I) = L.

For the implementation of this algorithm, we need Proposition 12. We next describe the per-
formance of the Inoue algorithm by a tree diagram defined as below.

Definition 14 (Tree Diagram)
Fix a linear order on the set of variables. Let I be an ideal. Perform the Inoue algorithm starting
from I. We will construct a tree diagram Tree(I) from I as follows:
(i) The input I is the first node at level 0 (root).
(ii) Take the basic closure of I and set J := BasicClosre(I). We have a second node J at level 1.
(iii) There are three cases at this node. (a) If Contra(J) , ϕ, we have reached a terminal node
called "a non-solution leaf". (b) If Contra(J) = ϕ and J is a maximal ideal, then we have reached
a terminal node called "a solution leaf". (c) If Contra(J) = ϕ and there remains a variable whose
value is not determined yet, we call this node "a branch point". At a branch point, select the least
variable x j among the undetermined ones. If there are p possible values {ek1 , . . . , ekp } for x j, then
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this tree branches in p directions at this node. Namely apply BasicClosure to the ideal J+ ⟨x j + ekl⟩
for each l (1 ≤ l ≤ p).
(iv) Repeat this process until all the branches reach a solution leaf or a non-solution one so that we
get a tree diagram Tree(I).

We set i1 := ♯{nodes}, i2 := ♯{leaves} and i3 := the depth of Tree(I) and call the triple II(I) :=
(i1, i2, i3) the Inoue invariant of the ideal I.

For the comparison of two Inoue invariants, we use the lexicographic order with i1 > i2 > i3.

Example 15
Suppose ♯(VS(I)) = 1. If BasicClosure(I) is the maximal ideal, then Tree(I) is the simplest tree as
shown below and II(I) = (2, 1, 1). In this case, we say I has a trivial Inoue invariant.

Fig. 1: The simplest tree with the trivial Inoue invariant (2,1,1)

solution 

leaf

root (level 0)

(level 1)

3 The virtual and the computable Inoue invariants
We will define two modified versions of the Inoue invariant which evaluate the difficulty of solving
a system of Boolean polynomial equations fairly well. These new Inoue invariants do not depend
on the linear order on the set of variables and are determined only by the the given ideal.

In Algorithm 13 (iii)-b or Definition 14 (iii)-c, we will change the way of choosing a variable
at a branch point and allow selecting any undetermined variable there. The algorithm works in
this case too and we obtain a tree diagram. We call this modified algorithm a generalized Inoue
algorithm and the triple numbers of this tree an Inoue number of I. An Inoue number of I depends
on the choice of the undetermined variable at each branch point and thus I has many Inoue numbers.

Definition 16 (Virtual Inoue Invariant)
Let I be an ideal. We define the virtual Inoue invariant (VII for short) of the ideal I as the minimal
Inoue number of the set of trees for the possible performance of the generalized Inoue algorithm.
We denote by VII(I) the VII of the ideal I.

The VII shows how difficult it is to solve the given system in the best possible way by the
generalized Inoue algorithm. It is determined by the ideal only and is theoretically satisfactory. Its
defect is that, except it is relatively small, it is very hard to compute since we have to know all the
Inoue numbers for the possible choice of a variable at any branch point.

So we next define a computable Inoue invariant according to the following strategy for the
choice of variables at each branch point. Let I be an ideal such that V(I) , ϕ and M the set of n
minimal polynomials of each variable with respect to I. If I (and so M) contains no contradiction
polynomials, then M consists of 3 types of polynomials: a solution polynomial, a semi-solution
polynomial and a polynomial of the form h(x j) = ax j (a ∈ (F2)m) with ♯a ≤ m− 2, which we call a
strategy polynomial in this note. Suppose a = ei1 + . . .+ eil (l = ♯a ≤ m− 2) and consider a strategy
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polynomial h(x j) = ax j ∈ M. Then we know x j , eik (1 ≤ k ≤ l). We call the number l the length
of the strategy polynomial ax j.

Definition 17 (The standard strategy for the selection of variables)
Let I be an ideal which is a branch point in the tree diagram.
(i) We first choose the set of variables S := {x f1 , . . . , x fs } where each x f j has the minimal branch
number p among the undetermined variables.
(ii) For a variable x f j in S and p possible values e j

k (1 ≤ k ≤ p) of x f j , set I′j,k := I + ⟨x f j + e j
k⟩. Let

M′j,k be the set of the n minimal polynomials of each variable with respect to the ideal I′j,k. We set

n(x f j , e
j
k) := the total number of the solution polynomials and the semi-solution ones contained in

M′j,k, and define n(x f j ) :=
∑p

k=1 n(x f j , e
j
k). Set S ′ := {x f j ∈ S | n(x f j ) is maximal}.

(iii) For a variable x f j in S ′ and p possible values e j
k (1 ≤ k ≤ p) of x f j , let a(x f j , e

j
k) be the total

sum of the length of the strategy polynomials contained in M′j,k, and set a(x j) :=
∑p

k=1 a(x f j , e
j
k).

We finally set S ′′ := {x f j ∈ S ′ | a(x j) is maximal} and we allow choosing the variable in S ′′ at this
branch point.

In Definition 17 (i), we choose the variables which give the minimal number of branches so
that we expect to have smaller trees. In (ii), n(x f j , e

j
k) is the number of the variables determined

uniquely by setting x f j = e j
k. So if n(x f j ) is bigger, it means that the values of more variables are

determined by choosing the variable x f j . In (iii), we choose the better variables from S ′ by means
of the strategy polynomials.

We call this strategy the standard strategy for the selection of variables at the branch points. It
turns out that this strategy drastically lessens the number of variables chosen at each branch point
(sometimes to 1).

Definition 18 (Computable Inoue Invariant)
For an ideal I, we define the computable Inoue invariant (CII for short) of I as the minimal Inoue
number of the set of all trees where the choice of variables is done by the standard strategy at each
branch point. We denote by CII(I) the computable Inoue invariant of I.

CII(I) is also determined only by the ideal I, and approximates VII(I) fairly well. Actually,
CII(I) ≥ VII(I) holds by definition and, when CII(I) is relatively small, we can determine VII (I)
(in most cases CII(I) = VII(I)).

Proposition 19
(i) CII(I) = (2, 1, 1)⇐⇒ VII(I) = (2, 1, 1).
(ii) If CII(I) = (4, 2, 2), then VII(I) = (4, 2, 2).

Proof (i) This is clear from the definition since there are no branch points.
(ii) If CII(I) = (4,2,2), then the minimal branch number at the first branch point at level 1 is 2, and
(4,2,2) is clearly the minimal Inoue number for any choice of the variable among the undetermined
ones. We note the converse assertion is false.

Remark 20
We may take some different strategy at the branch points to define CII’s. If we weaken (resp.
strengthen) the conditions of the strategy, namely allow more (resp. less) variables at the branch
points, then the resulting CII approximates the VII better (resp. worse), but the amount of compu-
tation increases (resp. decreases).
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4 Evaluation of the difficulty of Sudoku puzzles
We first formulate the rules of Sudoku puzzles in terms of a system of Boolean polynomial equa-
tions after [4, 13]. We assign 81 variables a11, . . . , a99 to each cell as shown in Table 1 below.

Table 1: Assignment of 81 variables

a11 a12 a13 a14 a15 a16 a17 a18 a19

a21 a22 a23 a24 a25 a26 a27 a28 a29

a31 a32 a33 a34 a35 a36 a37 a38 a39

a41 a42 a43 a44 a45 a46 a47 a48 a49

a51 a52 a53 a54 a55 a56 a57 a58 a59

a61 a62 a63 a64 a65 a66 a67 a68 a69

a71 a72 a73 a74 a75 a76 a77 a78 a79

a81 a82 a83 a84 a85 a86 a87 a88 a89

a91 a92 a93 a94 a95 a96 a97 a98 a99

Consider the Boolean polynomial ring (F2)9(a11, a12 . . . , a99) = (F2)9(ai j). Set 0 = (0, . . . , 0), 1 =
(1, . . . , 1) and e1 := (1, 0, . . . , 0), . . . , e9 := (0, . . . , 0, 1) ∈ (F2)9. Let us take the first row. Then the
37 equations below express the rules of Sudoku for the first row:

∑9
j=1 a1 j = 1

a1 j · a1k = 0 (1 ≤ j < k ≤ 9)

For example, a1 j = e j (1 ≤ j ≤ 9) satisfies these equations.
There are 9 rows, 9 columns and 9 3 × 3 blocks. So there are 37 × 27 = 999 equations (or

generators of an ideal) in all. Adding the clues (initial values) to these generators, we can represent
the rules of Sudoku puzzles by a system of Boolean polynomial equations. We call the ideal I
generated by these 999 polynomials together with the initial values the ideal of the given Sudoku
puzzle. Then VS(I) is the set of solutions of this Sudoku puzzle.

We now turn to the evaluation of the difficulty of Sudoku puzzles. We have implemented
the program for computing CII on Magma [1]. Then we have computed the CII’s of the puzzles
contained in a series of 6 Sudoku puzzle books [3], where each book contains 105 puzzles so that
there are 630 puzzles in all. The result is summarized in Table 2 below.

In Table 2, the level shows the difficulty of the puzzle for humans assigned by the author of the
books. The second and third columns show the average and maximum of the CII’s of the puzzles of
each level respectively. The column ♯(puzzles) (resp. ♯(trivial)) shows the number (= a) of puzzles
of each level (resp. the number (= b) of puzzles with trivial CII of this level). The last column
shows the proportion b

a × 100(%).
From the average column of this table, we conclude that CII has a fairly strong correlation with

the level of the puzzles, taking the ambiguity of the level assigned by humans into account. We
should remark that the puzzles with trivial CII are included even in the most difficult puzzles such
as level 16–18, though the proportion of them is small if the level is large. One reason for this is
that humans seem to feel that some kind of the puzzles with trivial CII is difficult. More precisely,
if the b-rank of the puzzle with trivial CII is large, humans tend to feel it difficult (see the next
section for this).

We should also refer to the two puzzles ∞1 and ∞2 in Table 3 with extremely large CII. The
puzzle ∞1 (resp. ∞2) is the famous "the world’s hardest Sudoku puzzle" in 2010 (resp. in 2012)
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designed by Dr. A. Inkala. The puzzle ∞1 (resp. ∞2) has (40,20,7) (resp. (80,40,12)) as CII, and
(80,40,12) is the largest CII as far as we know. These two puzzles are extremely rare also in the
sense that both have s-rank∞ (for the definition of s-rank, see the next section).

Table 2: The average of CII’s of Sudoku puzzles of various level

Level average of CII max of CII ♯(puzzles) ♯(trivial) proportion (%)

1 (2,1,1) (2,1,1) 12 12 100

2 (2,1,1) (2,1,1) 40 40 100

3 (2,1,1) (2,1,1) 22 22 100

4 (2,1,1) (2,1,1) 51 51 100

5 (2,1,1) (2,1,1) 34 34 100

6 (2,1,1) (2,1,1) 31 31 100

7 (2,1,1) (2,1,1) 38 38 100

8 (2.3,1.1,1.1) (4,2,2) 55 47 85

9 (2.6,1.3,1.3) (6,3,3) 52 38 73

10 (3.8,1.9,1.9) (10,5,5) 62 21 34

11 (4.5,2.3,2.3) (12,6,6) 47 8 17

12 (5.4,2.7,2.6) (12,6,6) 65 5 8

13 (5.5,2.8,2.6) (14,7,6) 32 4 13

14 (5.0,2.5,2.4) (10,5,4) 24 3 13

15 (5.6,2.8,2.6) (14,7,6) 33 5 15

16 (7.7,3.8,3.7) (14,7,7) 12 1 8

17 (5.0,2.5,2.5) (10,5,5) 10 3 30

18 (7.2,3.6,3.3) (14,7,6) 10 1 10

Table 3: The world’s hardest Sudoku puzzles in 2010 and 2012

5 3

8 2

7 1 5

4 5 3

1 7 6

3 2 8

6 5 9

4 3

9 7

∞1: CII = (40,20,7)

8

3 6

7 9 2

5 7

4 5 7

1 3

1 6 8

8 5 1

9 4

∞2: CII = (80,40,12)

We finally note that the main results of [10] can be rephrased in terms of VII as follows.

Theorem 21 ([10] Theorem 24 and Theorem 31)
(i) All the 4-doku puzzles (4 × 4) with a unique solution have the trivial VII (2, 1, 1).
(ii) All the diagonal 5-doku puzzles (5×5 with no block conditions but with 2 diagonal conditions)
with a unique solution have the trivial VII (2, 1, 1) except the 2 puzzles W1 and W2 in Table 4
below (modulo rotation and reflection). These 2 puzzles have (4,2,2) as the VII.
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Table 4: The diagonal 5-doku puzzles with the non-trivial VII (4, 2, 2)

W1
1 4 5

3 1 5

W2
1

4

3 1

4 5

5 Comparison with the known methods for evaluating the Su-
doku puzzles

In this section, we review the 3 known methods for evaluating the difficulty of Sudoku puzzles
([6, 8, 14]). Especially, we will compare the b-rank and s-rank defined in [8] with our CII.

In [6], the authors tried to evaluate the difficulty of the puzzles basically by the quantity of
computations needed for the performance of the generalized Inoue algorithm. They chose 4 kinds
of data to evaluate the puzzles, one of which is the number of times of computations of the Boolean
Groebner bases. The experimental data shows that this method gives a good indicator of the diffi-
culty of the puzzles.

One of the defects of this method is that the 4 kinds of data used for the evaluation are not an
invariant of the given ideal. Indeed, in the generalized Inoue algorithm used in [6], how to choose
a variable at the branch points is not shown ( it is only claimed that "choose a suitable variable and
continue"). Anyway, the 4 kinds of data used for the evaluation depend on how to choose a variable
at the branch points, and hence are not an invariant of the given ideal.

We also note that this method depends on the kinds of data chosen for the evaluation. Namely,
the more kinds of data are chosen for evaluation, the more precisely we can evaluate the level of
the puzzles but the amount of computation gets larger. Thus how to choose a suitable set of data is
to be studied in this direction.

In [14], the authors evaluated the puzzle with the ideal I by the average LP(I) of the length of
all the paths in the tree diagrams arising from the generalized Inoue algorithm. This LP(I) is an
invariant of the ideal I, and turns out to be a good indicator of the difficulty of the puzzles.

For the computation of LP(I), they had to compute the length of all the paths in the tree dia-
grams arising from the generalized Inoue algorithm, which is a huge computation. So they needed
to develop parallel computing for this.

Thus LP(I) is close to CII(I) in idea, whereas our CII (approximately) measures the minimum
size of the tree diagrams arising from the generalized Inoue algorithm. We note that the amount
of computations for CII is so small that we can compute CII with a PC mostly in several minutes
without parallel computing.

Finally in [8], a hierarchy of Boolean polynomial ideals was defined by two invariants, the
basic rank and the strategy rank. We now review their definitions and compare them with our CII
in detail. The definition of basic rank is easy:

Definition 22 (Basic Rank)
Let I ⊂ (F2)m(x) be an ideal with ♯VS(I) = 1. If BasicClosure(I) is a maximal ideal, then we call I
a basic solvable ideal.
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Suppose I is basic solvable. Recall that the operationΨ0 is defined byΨ0(I) := I+⟨Asp(SemiSol(I))⟩.
Then J := BasicCosure(I) is obtained from I by applying Ψ0 several times. We define the basic
rank (or b-rank for short) of I as the least m such that (Ψ0)m(I) = J.

Thus by definition, I has trivial CII (2,1,1) if and only if I is basic solvable. We have computed
the b-rank of the 364 basic solvable ideals contained in the 6 books [3]. Table 5 below shows the
average of b-rank of each level. From this we know that the b-rank of an ideal I gives a good
hierarchy to Sudoku puzzles with the trivial CII, in the sense that it has a strong correlation with
the level of the puzzle for humans.

Table 5: The average of b-ranks of the puzzles with trivial CII

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Ave. 1.6 2.5 2.6 2.8 4.0 4.6 4.7 5.1 6.7 6.8 7.9 7.2 7.3 8.7 8.4 7.0 7.7 10.0

For the definition of the strategy rank, we need to define a refutable polynomial.

Definition 23 (Refutable Polynomial)
Let I ⊂ (F2)m(x) be an ideal and f (x j) = x j+ek a solution polynomial. If BasicClosure(I+⟨x j+ek⟩)
contains a contradiction polynomial, then f (x j) is called a basic refutable polynomial with respect
to I.

Suppose f (x j) = x j + ek is basic refutable. Then the minimal number m such that (Ψ0)m(I)
contains a contradiction polynomial is called the basic refutable rank of f with respect to I.

Definition 24 (Strategy Closure)
Let I ⊂ (F2)m(x) be an ideal. For a natural number k, we set BRk(I) := {ek x j | x j + ek is basic
refutable with respect to I of rank ≤ k}. We define Φk(I) := BasicClosure(I + ⟨BRk(I)⟩). Then we
have an ascending ideal chain:

I ⊂ Φk(I) ⊂ (Φk)2(I) ⊂ . . . ⊂ . . . .

Since (F2)m(x) is a finite set, there exists an m such that Φm
k (I) = Φm+1

k (I) = . . .. For such an m, we
set Φ∗k(I) := Φm

k (I) and call this the strategy closure of I of rank k.
Then we move k. Consider the ascending ideal chain:

Φ∗1(I) ⊂ Φ∗2(I) ⊂ . . . ⊂ Φ∗k(I) ⊂ . . . ⊂ . . . .

Then there exists an m such that Φ∗m(I) = Φ∗m+1(I) = . . .. For such an m, we set Φ∗∞(I) := Φm
∞(I)

and call it the strategy closure of I.

Definition 25 (Strategy Rank)
Let I ⊂ (F2)m(x) be an ideal with ♯VS(I) = 1. Suppose I is not basic solvable. If the strategy
closure Φ∗∞(I) of I is a maximal ideal, then we call I a strategy solvable ideal.

For a strategy solvable ideal I, let m be the least integer such that Φ∗m(I) = Φ∗∞(I). We call such
m the strategy rank (or s-rank for short) of I. We say a basic solvable ideal has s-rank 0. If the
strategy closure Φ∗∞(I) is not a maximal ideal, we say I has s-rank∞.

In [8, 9], the s-ranks of all Sudoku puzzles in [3] were computed (the computational data in
[8] was incorrect, and is corrected in [9]). It turned out that all the values of the s-rank of these
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puzzles are finite, and actually are in {0, 1, 2}. So we know that, from the viewpoint of solving the
Sudoku puzzles, the method of taking strategy closure is so powerful that all the puzzles in [3] can
be solved by it. The puzzles with s-rank∞ are rare, and the 2 puzzles∞1 and∞2 in Table 3 are the
only ones with s-rank∞ as far as we know.

From the viewpoint of giving hierarchy to Sudoku puzzles, the s-rank gives only 3 categories
as far as the puzzles in [3] are concerned. Thus s-rank is too coarse for evaluating Sudoku puzzles
by itself. In [9], giving a finer hierarchy to the Sudoku puzzles was tried by means of two numbers
A, B. We here propose a very simple and natural invariant in order to give a finer hierarchy to
Sudoku puzzles with finite positive s-rank.

Definition 26 ((s, t)-rank)
Let I be a strategy solvable ideal of s-rank s and Φ∗∞(I) its strategy closure which is maximal. Let
t be the least number such that (Φs)t(I) = Φ∗∞(I). We call the pair (s, t) the (s, t)-rank of I.

We have computed the (s, t)-rank of the 266 puzzles which are not basic solvable in [3]. Then
we have found that the (s, t)-rank ranges from (1, 1) to (1, 7) and from (2, 1) to (2, 3). In order to
show the result clearly, we give a point to each (s, t)-rank as follows:

Table 6: The 10 point hierarchy of strategy solvable puzzles by (s, t)-rank

(s, t) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,1) (2,2) (2,3)

point 1 2 3 4 5 6 7 8 9 10

The average of 10-point-rated (s, t)-rank of each level is shown in Table 7 below. For the
comparison, we also show the average of CII’s with non-trivial CII. We note that all the puzzles of
level 1 – 7 are basic solvable (namely, s-rank 0) so that they are excluded from this table.

From Table 7, we conclude that both (s, t)-rank and CII give a good hierarchy to Sudoku puzzles
of finite positive s-rank in the sense that they have a correlation with the level of the puzzles for
humans.

Table 7: The average of (s, t)-rank and CII of the puzzles with non-trivial CII

Level 8 9 10 11 12 13 14 15 16 17 18

(s,t)-rank 1.13 1.36 1.63 1.87 1.67 2.21 2.86 2.43 2.09 2.86 3.78

CII (4.0,2.0,2.0) (4.1,2.1,2.1) (4.7,2.4,2.4) (5.0,2.5,2.5) (5.7,2.9,2.8) (6.0,3.0,2.9) (5.4,2.7,2.6) (6.2,3.1,2.9) (8.2,4.1,3.9) (6.3,3.1,3.1) (7.8,3.9,3.6)

Remark 27
For an ideal I ⊂ (F2)m(x), set BR∞(I) := {ek x j | x j + ek is basic refutable with respect to I}. We set
Φ∞(I) := BasicClosure(I + ⟨BR∞(I)⟩). Consider the ascending ideal chain

I ⊂ Φ∞(I) ⊂ (Φ∞)2(I) ⊂ . . . ⊂ . . . .

Then there exists an natural number m such that (Φ∞)m(I) = (Φ∞)m+1(I) = . . .. It is easy to see that
the strategy closure Φ∗∞(I) is equal to (Φ∞)m(I) for such an m. We note that this gives a convenient
way of computing the strategy closure. For a strategy solvable ideal I, we call the least m such that
Φ∗∞(I) = (Φ∞)m(I) the s∞- rank of I.

We have computed the s∞-rank of all the puzzles in [3], and found that all the puzzles have
s∞-rank 1 except one puzzle. This special puzzle is Q101 in UltraHard of [3], which has s∞-rank
2. Thus s∞-rank turns out not to give enough hierarchy to Sudoku puzzles.
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6 Conclusion
We have defined two kinds of new invariants of a Boolean polynomial ideal, namely CII and VII,
which measure the difficulty for solving it by the generalized Inoue algorithm in the best possible
way. We have then confirmed by experiments that, in the case of those ideals arising from Sudoku
puzzles, CII is a fairly good indicator of the difficulty of puzzles for humans.

We have also compared them with the b-rank and s-rank defined in [8]. The puzzles from the
elementary level to the middle have trivial CII (2,1,1). To evaluate these puzzles with trivial CII,
the b-rank turns out to be an excellent indicator of the level of the puzzles for humans.

We emphasize that the s-rank and the finer ranks derived from it cannot evaluate the puzzles
with s-rank ∞. On the other hand, CII can evaluate the puzzles with s-rank ∞ fairly well with a
small amount of computation. For example, the puzzles∞1 and∞2 in Table 3 have both s-rank∞,
but we can say that∞2 is much harder that∞1 by comparing their CII’s.
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