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Abstract

This paper describes computations of the circumradius of cyclic polygons given by the lengths
of the sides. Extending the results of Robbins (1994) and Pech (2006), for the first time we
succeeded in explicitly computing the defining polynomials of the radius of cyclic hexagons
and heptagons, with degrees 14 and 38 respectively. We discuss efficient algorithms for elim-
ination by resultants, and characterize the obtained polynomials to confirm their correctness,
considering equilateral cases.

1 Introduction
In this study, we consider a classic problem in Euclidean geometry for cyclic polygons; that is,
polygons inscribed in a circle. In particular, we focus on computing the circumradius r of cyclic
n-gons given by the lengths of sides a1, a2, . . . , an. Recently, the case for cyclic pentagons was
solved by elaborate computations. D. P. Robbins [7] showed that the defining polynomial of r2 has
degree 7, and P. Pech [6] computed the actual form of this polynomial.

In our previous paper [4], it was pointed out that Japanese mathematicians in the 17th century
had already derived the identical equation with degree 14 for the circumdiameter of cyclic pen-
tagons, even though the equation itself was not explicitly described. In addition, the author briefly
reported the circumradius of cyclic hexagons at the ISSAC2010 poster session [3].

In this paper, we show the details of computations for cyclic hexagons and heptagons to give
an efficient algorithm. Using these computations, we have explicitly obtained polynomials that
define the circumradius of hexagons and heptagons, with degrees 14 and 38, respectively, as con-
jectured by Robbins. Moreover, we elucidate the actual forms of these polynomials and confirm
their correctness considering degenerated or equilateral cases.

Several authors have studied the “area formula (Heron polynomial)” for cyclic polygons since
Robbins [7], as the outline of recent progress on this problem is shown in [5]. Robbins’ conjecture
of Equation (13) on the degree of generalized Heron polynomials was proved by M. Fedorchuk
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and I. Pak [1], and later another simpler proof was given by F.M. Maley et al. [2]. Independently
of these studies, V.V. Varfolomeev [8] discusses the area and the circumradius of cyclic polygons,
but has never obtained an explicit formula for n > 5.

In contrast, this paper focuses on the “radius formula” for cyclic polygons, which does not
seem to have been so closely investigated in the above papers. To the best of our knowledge, there
exist no other reports in which the circumradii of hexagons and heptagons are explicitly computed.
However, the result for heptagons is already so huge that it seems impossible to handle cyclic
octagons by analogous algorithms using existing computer algebra systems.

2 Previously known results

2.1 Circumradius of cyclic quadrilateral
Firstly, we consider the circumradius r of a triangle with side lengths a1, a2, and a3. It is straight-
forward to obtain the following relation using cosine and sine rules
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1)r2 + a2
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In the following, we let x := r2 and consider the defining polynomial in x for each inscribed
polygon. From the above equation, we express the defining polynomial for a cyclic triangle as

Φ3(a1, a2, a3; x) := (a4
1 + a4

2 + a4
3 − 2a2

1a2
2 − 2a2

2a2
3 − 2a2

3a2
1)x + a2

1a2
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Solving Equation (1) with r, we obtain the formula of Heron

r =
a1a2a3√

(a1 + a2 + a3)(−a1 + a2 + a3)(a1 − a2 + a3)(a1 + a2 − a3)
. (3)

We compute the circumradius of a cyclic (n+1)-gon by recurrently using the result for an n-gon.
In this process, we use an auxiliary polynomial F3 by replacing a2

i with bi in Φ3 for computational
efficiency

F3(b1, b2, b3; x) := (b2
1 + b2

2 + b2
3 − 2b1b2 − 2b2b3 − 2b3b1)x + b1b2b3. (4)

Secondly, we divide a given cyclic quadrilateral by a diagonal with length u into two triangles
with lengths of sides {a1, a2, u} and {a3, a4, u}. Since these triangles have a circumcircle in common,
we compute the following resultant to eliminate v(:= u2)

F4(b1, b2, b3, b4; x) := Resv(F3(b1, b2, v; x), F3(b3, b4, v; x))/x2, (5)

where the redundant factor x2 is removed. When we let Φ4(a1, a2, a3, a4; x) := F4(a2
1, a

2
2, a

2
3, a

2
4; x),

this polynomial is factored as follows

Φ4(ai; x) = ((−a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)(a1 + a2 + a3 − a4)x

−(a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3))

× ((a1 + a2 + a3 + a4)(a1 − a2 − a3 + a4)(a1 − a2 + a3 − a4)(a1 + a2 − a3 − a4)x

−(a1a2 − a3a4)(a1a3 − a2a4)(a1a4 − a2a3)) .
(6)
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Solving the first factor, we obtain the classic result of Brahmagputa

r =

√
(a1a2 + a3a4)(a1a3 + a2a4)(a1a4 + a2a3)

(−a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)(a1 + a2 + a3 − a4)
. (7)

This result means that the polynomial Φ4(a1, a2, a3, a4; x) in Equation (6) defines the circum-
radii of a cyclic quadrilateral including convex and non-convex cases for a given set of lengths
{a1, a2, a3, a4}.

2.2 Circumradius of cyclic pentagon
From the computation in the previous subsection, we straightforwardly obtain the following recur-
rence relation for n > 3 Fn(b1, . . . , bn; x) := Resv(Fn−1(b1, . . . , bn−2, v; x), F3(bn−1, bn, v; x))/x`

Φn(a1, . . . , an; x) := Fn(a2
1, . . . , a

2
n; x).

(8)

We should note that the power ` of the redundant factor x` cannot be predicted before computing
the resultant.

Similarly to computing Φ4(ai; x), we compute Φ5(ai; x) for the circumradius of a cyclic pen-
tagon as follows

F5(b1, . . . , b5; x) := Resv(F4(b1, b2, b3, v; x), F3(b4, b5, v; x))/x

Φ5(a1, . . . , a5; x) := F5(a2
1, . . . , a

2
5; x)

= A7x7 + · · · + A1x + A0 (Ai ∈ Z[a1, . . . , a5]).

(9)

In this paper, we put aside the reduction of Φn(ai; x) using the symmetry among ai’s, and focus on
the number of terms in the expanded form of the defining polynomials Φn(ai; x). If we expand all
the Ai’s, this Φ5(ai; x) has 2,922 terms in Z[a1, . . . , a5, x].

We characterize the polynomialΦ5(ai; x) by considering special cases of side lengths a1, . . . , a5
to confirm its correctness.

• If we consider the case degenerated to a quadrilateral letting a5 := 0, we obtain

Φ5(a1, a2, a3, a4, 0; x) = x3 {Φ4(a1, a2, a3, a4; x)}2 . (10)

• If we consider the equilateral case, we obtain the following equation

Φ5(1, 1, 1, 1, 1; x) = 1215x7 − 3240x6 + 3618x5 − 2205x4 + 795x3 − 170x2 + 20x − 1
= (5x2 − 5x + 1)(3x − 1)5 = 0.

(11)
Therefore, the radii of the circumcircles are

r =

√
1
2
+

√
5

10
,

√
1
2
−
√
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10

,
1
√

3
, (12)

which respectively correspond to the cases of regular pentagon, regular pentagram, and (five
degenerated) regular triangles.
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3 Circumradius of cyclic hexagon
The degrees of defining polynomials Φn(ai; x) are conjectured by Robbins [7] and proved by Fe-
dorchuk and Pak [1] as follows. Let

km :=
2m + 1

2

 2m

m

 − 22m−1 =

m−1∑
j=0

(m − j)

 2m + 1
j

 ; (13)

that is, let ki := 1, 7, 38, 187, 874, . . . (i = 1, 2, 3, 4, . . .). Then,

• the degree in x of Φ2m+1(ai; x) is km, and

• the degree in x of Φ2m+2(ai; x) is 2km, where Φ2m+2 is factored into the product of two polyno-
mials with each degree km.

We computed the case of cyclic hexagon (m = 2), using the recurrence relation of Equation (8).
As a result, we obtained a polynomial with degree 14 as an explicit form

F6(b1, . . . , b6; x) := Resv(F5(b1, b2, b3, b4, v; x), F3(b5, b6, v; x))/x8

Φ6(a1, . . . , a6; x) := F6(a2
1, . . . , a

2
6; x)

= B14x14 + · · · + B1x + B0 = 0 (Bi ∈ Z[a1, . . . a6]).

(14)

This computation required 95 seconds of CPU time in the following environment: Maple14 on
Win64, Xeon(2.93 GHz)×2, 24 GB RAM.

Next, we factorized Φ6(ai; x), and obtained

Φ6(ai; x) = φ(ai; x) · ϕ(ai; x) (degxφ = degxϕ = 7), (15)

using approximately 9.0 hours of CPU time in the above computational environment. Both φ and
ϕ have 19,449 terms and Φ6 has 497,417 terms, in their expanded forms.

Finally, we characterize the polynomialΦ6 considering special cases of given lengths a1, . . . , a6
as in Section 2.2. From the facts shown below, we believe that the obtained Φ6(ai; x) is the correct
polynomial for a cyclic hexagon.

• If we put a6 := 0 in φ(ai; x) and ϕ(ai; x), we have

φ(a1, . . . , a5, 0; x) = ϕ(a1, . . . , a5, 0; x) = Φ5(a1, . . . , a5; x); (16)

hence, the following relation between Φ6 and Φ5 holds

Φ6(a1, . . . , a5, 0; x) = {Φ5(a1, . . . , a5; x)}2 . (17)

• If we consider equilateral cases, we have

φ(1, 1, 1, 1, 1, 1; x) = 1024(3x − 1)(2x − 1)6, (18)

each factor of which respectively corresponds to a regular triangle and a regular square (6-fold),
and we also have

ϕ(1, 1, 1, 1, 1, 1; x) = 0 (identically), (19)

which means that a regular hexagon cannot be expressed by φ(ai; x), ϕ(ai; x), nor Φ6(ai; x).
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The meaning of Equation (19) is interpreted as follows. When n is even, equilateral n-gons contain
“pairwise contracted” broken lines with n/2 segments. The circumradii of those figures can change
continuously (1/2 ≤ r < ∞), and they are not expressed as roots of any polynomials.

Instead of Equation (19), we can conduct the following analysis. If we put a1, . . . , a5 := 1
firstly, we obtain the relation

ϕ(1, 1, 1, 1, 1, a6; x)/(a6 − 1)10 = ((a6 − 5)x2 + 5x − 1)((a6 + 3)x − 1)5. (20)

Secondly, if we put a6 := 1 at the right hand side of Equation (20), we have (4x − 1)6(x − 1) = 0.
The first factor (r = 1/2) corresponds to the case where the six sides are degenerated to only one
segment (6-fold), and the second factor (r = 1) corresponds to a regular hexagon.

4 Circumradius of cyclic heptagon
In order to compute the circumradius of a cyclic heptagon, we need to compute the following
resultant using the recurrence relation of Equation (8)

F7(b1, . . . , b7; x) := Resv(F6(b1, b2, b3, b4, b5, v; x), F3(b6, b7, v; x))/x`. (21)

Unfortunately, this computation seemed too complicated to handle directly. Hence, we took the
following steps. First, F6 and F3 are expressed as polynomials in v f (v) := F6 = p16v16 + · · · + p1v + p0 (pi ∈ Z[b1, . . . , b5, x])

g(v) := F3 = q2v2 + q1v + q0 (qi ∈ Z[b6, b7, x]) .
(22)

Next, instead of Resv(F6, F3), we compute the pseudo-remainder of f (v) divided by g(v)

h(v) := premv( f , g) = r1v + r0 (ri ∈ Z[b1, . . . , b7, x]) . (23)

Hence, we need to subsequently compute Resv(g, h), but these polynomials are still too large to
handle with the built-in function for resultants in Maple14. On the other hand, we should note that

Resz(az2 + bz + c, dz + e) =

∣∣∣∣∣∣∣∣∣∣
a b c

d e

d e

∣∣∣∣∣∣∣∣∣∣ = ae2 + cd2 − bde, (24)

which simply expresses the resultant of two polynomials with degrees two and one. Therefore, we
obtain

ψ(bi; x) := Resv(g, h) = q2r2
0 + q0r2

1 − q1r2r1, (25)

which means that we have eliminated v from f (v) and g(v). This depends on the specification of
Maple14 that holds ψ(bi; x) in an unexpanded form until it is explicitly ordered to expand. These
steps required about 434 seconds of CPU time in the same environment shown in Section 3.

Finally, removing the redundant factor, we obtain
F7(b1, . . . , b7; x) := ψ(b1, . . . , b7; x)/x21

Φ7(a1, . . . , a7; x) := F7(a2
1, . . . , a

2
7; x)

= C38x38 + · · · +C1x +C0 = 0 (Ci ∈ Z[a1, . . . a7]).

(26)

Here we remark that each Ci is so large that we cannot expand Φ7(ai; x) in our computational
environment. For example, the maximum number of terms among Ci’s is 19,464,837 for C19.
However, we have confirmed that Φ7(ai; x) has degree 38 in x as conjectured by Robbins, and we
believe that the obtained Φ7(ai; x) is correct from its characteristics shown below.
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• The coefficients have the following structures C38 =
∏64(a1 ± a2 ± a3 ± a4 ± a5 ± a6 ± a7) (all combinations),

C0 = a20
1 a20

2 a20
3 a20

4 a20
5 a20

6 a20
7 .

(27)

• If we put a7 := 0, we have the following relation between Φ7 and Φ6

Φ7(a1, . . . , a6, 0; x) = x10 {Φ6(a1, . . . , a6; x)}2 . (28)

• If we consider equilateral cases, we have

Φ7(1, . . . , 1; x) = (7x3 − 14x2 + 7x − 1)(5x2 − 5x + 1)7(3x − 1)21. (29)

The first factor 7x3 − 14x2 + 7x − 1 is derived from the formula for a septimal angle

sin 7θ = −64 sin7 θ + 112 sin5 θ − 56 sin3 θ + 7 sin θ, (30)

for θ = π/7 and sin θ = 1/(2r). Therefore, this factor represents a regular heptagon and
two types of star-like heptagons. The second factor corresponds to a regular pentagon and
pentagram (7-fold each), and the third factor corresponds to a regular triangle (21-fold).

5 Concluding remarks

n Degree No. of terms

3 1 7
4 2 71
5 7 2,922
6 14 497,417
7 38 337,550,051

Table 1: Defining polynomial Φn(ai; x) of circumradius of cyclic n-gon

In this study, we succeeded in computing explicit formulae for the circumradius of cyclic
hexagons and heptagons for the first time, and investigated the characteristics of each defining
polynomial. We summarize the shapes of Φn(ai; x) for n = 3, . . . , 7 in Table 1. The degrees 14 for
a hexagon and 38 for a heptagon coincide rightly with those conjectured by Robbins. As a result,
we believe that it is a significant breakthrough to have obtained Φ6(ai; x) and Φ7(ai; x) in explicit
forms from the viewpoint of practical computation.

If we try to compute the circumradius of a cyclic octagon, we have to compute the following
resultant

F8(b1, . . . , b8; x) := Resv(F7(b1, b2, b3, b4, b5, b6, v; x), F3(b7, b8, v; x))/x`. (31)

However, F7 is already so huge (nearly 15 GB) that it seems impossible to handle octagons by a
similar approach to that presented in Section 4 using existing computer algebra systems.
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