
数式処理 J.JSSAC (2006)
Vol. 12, No. 3, pp. 21 - 29

奨励賞受賞論文

Using Coefficient-wise Tolerance
in Symbolic-Numeric Algorithms for Polynomials∗

Kosaku Nagasaka†

Faculty of Human Development, Kobe University

(Received 2005/9/26)

1 Introduction
Symbolic-numeric algorithms have been studied by several researchers since early 1990s in the
world. With recent studies of approximate factorizations, approximate GCDs and others for nu-
merical or empirical polynomials, we can operate such computations with non-exact coefficients.
Those algorithms work well on several Computer Algebra Systems (Mathematica and Maple, for
example). Especially on Maple, we can use SNAP (Symbolic Numeric Algorithms for Polynomi-
als) package to compute approximate GCDs.

In various implementations of such algorithms, bounding errors on coefficients are provided by
polynomial norms (1-norm, 2-norm and∞-norm, for example) in general. Because operating with
non-exact coefficients involves computing numerical properties (eg. singular values) and polyno-
mial norms have high affinities for matrix norms and operations. In fact, lots of algorithms for
empirical polynomials use the singular value decomposition. However, from a practical point of
view, tracking or treating errors as polynomial norms is not applicable as much as floating-point
numbers, since for floating-point numbers, we have a few kind of significance arithmetics (interval
numbers, for example).

In this paper, we review known symbolic numeric algorithms in terms of significance arith-
metics, and introduce an absolute irreducibility testing for bivariate polynomials and a relatively
prime testing for univariate polynomials. Basically, there is no difference from those original al-
gorithms, but they would be more natural for the people who use significance arithmetics and give
more efficient error bounds.

We note that this paper is involved with the authors’ presentation at the 14th Workshop of
JSSAC (Japan Society for Symbolic and Algebraic Computation), 2005.

∗ This research is partly helped by Grants-in-Aid of MEXT, JAPAN, #16700016.
†nagasaka@main.h.kobe-u.ac.jp

c© 2006 Japan Society for Symbolic and Algebraic Computation

22 数式処理第 12巻第 3号 2006

2 Coefficient-wise and Polynomial Norm Tolerance
In this section, we review polynomial norms and a coefficient-wise tolerance and their relation
briefly. Let f (x1, . . . , xr) be the given polynomial as follows.

f (x1, . . . , xr) =
∑

xe1
1 ···x

er
r ∈supp(f)

ce1,...,er xe1
1 · · · x

er
r ∈ C[x1, . . . , xr],

where supp(f) denotes the set of power products of terms whose coefficients are not zero. In
most algorithms, the following definitions are used for polynomial 1-norm, 2-norm and ∞-norm,
respectively.

‖ f ‖1 =
∑

xe1
1 ···x

er
r ∈supp(f) |ce1,...,er |,

‖ f ‖2 =
√∑

xe1
1 ···x

er
r ∈supp(f) |ce1,...,er |2,

‖ f ‖∞ = maxxe1
1 ···x

er
r ∈supp(f) |ce1,...,er |.

For example, the 1-norm, 2-norm and ∞-norm of 4x2
1 − 3x1x2 + 2x1 + 1 are 10,

√
30 and 4,

respectively. If this polynomial has numerical errors on their coefficients, for example, using a
polynomial norm, we say that this polynomial has an error part whose coefficients have numerical
errors at most 10−2 in 2-norm. This means that the above polynomial can be 4x2

1−3x1x2+2x1+1.01,
4x2

1 − 3.001x1x2 + 2x1 − 0.999 or the like. To represent this, we denote numerical or empirical
polynomials as polynomial sets as follows.

P∗(f , ε) = { f̃ | f̃ ∈ C[x1, . . . , xr], degxi
f̃ ≤ degxi

f , ‖ f − f̃ ‖∗ ≤ ε},

where ∗ denotes 1, 2 or∞ and ε plays the error bound of the given polynomial f (x1, . . . , xr).
On the other hand, we can bound numerical errors on a coefficient basis, as follows. We call it

coefficient-wise tolerance. Let consider that each coefficient ce1,...,er involves numerical error which
is bounded by εe1,...,er ∈ R≥0. This means, for example, c0,0 can be represented by an interval
number [0.999, 1.001], for c0,0 = 1.0 and ε0,0 = 10−3. Therefore, using these coefficient-wise
tolerances, we can denote numerical or empirical polynomials as polynomial sets as follows.

Pcw(f) = { f̃ | f̃ ∈ C[x1, . . . , xr], supp(f̃) ⊆ supp(f), |c̃e1,...,er − ce1,...,er | ≤ εe1,...,er ,

f̃ =
∑

xe1
1 ···x

er
r ∈supp(f̃) c̃e1,...,er xe1

1 · · · x
er
r }.

We note that this representation can be defined by using a weighted ∞-norm for polynomials. A
weight is depending on the given coefficients. Hence, in the future, this coefficient-wise tolerance
will be useless if we use weighted norms easily.

Remark 1
Some computer algebra systems have significance arithmetics other than interval numbers (see
[4, 11]). Those error tracking systems are useful for users who want both speed and accuracy.
However, most of such significance arithmetics sacrifice accuracy to gain speed and not to tend
to become over-estimated. This means that the results might be incorrect mathematically in some
cases.

3 Coprimality Testing
For exact computations, coprimality testing can be done by calculating the rank of the Sylvester
matrix of the given two polynomials. We review this briefly. Let g and h be the following univariate

J.JSSAC Vol. 12, No. 3, 2006 23

polynomials, respectively.

g(x) =
n∑

i=0

gixi
1, h(x) =

m∑
i=0

hixi
1 ∈ C[x1].

We have the well-known lemma that g and h are coprime if the following Sylvester matrix of g and
h is of full rank (see usual text books for details).

Syl(g, h) =

gn hm

gn−1 gn hm−1 hm
... gn−1

. . .
... hm−1

. . .

...
...

. . . gn h1
...

. . .
. . .

...
...

... gn−1 h0 h1
...
. . . hm

g0
...

...
... h0

. . .
... hm−1

g0
...

...
. . .

. . .
...

. . .
...

. . . h1

g0 h0

.

For numerical or empirical polynomials, the given coefficients may be not correct, so the rank
of the Sylvester matrix also may change. We have to think its alternative way for non-exact poly-
nomials. In general, this is done by using singular value decomposition in part, in various symbolic
numeric algorithms [1, 9, 14, 13], because singular values have the following property for example,
so they are very useful to operate with perturbations.

Lemma 2 (Corollary 8.6.2 in [3])
For any matrices A and E ∈ Cn×m and any positive integer k ≤ min{n,m}, we have

|σk(A + E) − σk(A)| ≤ ‖E‖2,

where σk(A) denotes the k-th largest singular value of A.

We review its basic idea for polynomial sets P2(g, εg) and P2(h, εh), where P2(∗, ∗) is defined
in the previous section. Since Frobenius norm is always greater than or equal to 2-norm, we have
the following inequality for any polynomial pair g̃ ∈ P2(g, εg) and h̃ ∈ P2(h, εh),

‖Syl(g̃, h̃) − Syl(g, h)‖2 ≤
√

mε2
g + nε2

h.

Hence, by the above lemma, for any positive integer k ≤ n + m, we have

|σk(Syl(g̃, h̃)) − σk(Syl(g, h))| ≤
√

mε2
g + nε2

h.

Therefore, any polynomial pair g̃ ∈ P2(g, εg) and h̃ ∈ P2(h, εh) are coprime if

σn+m(Syl(g, h)) >
√

mε2
g + nε2

h. (1)

24 数式処理第 12巻第 3号 2006

If the given two polynomials are not close to polynomials that have common factors, coprimal-
ity testing using the inequality (1) works well. However, the right hand side of the inequality may
be over-estimated for most cases, so the inequality does not work for polynomials that are close to
polynomials that have common factors. Especially for polynomials with coefficients whose errors
are bounded by coefficient-wise, the right formula easily computes over-estimated values. For such
polynomials, we should use coefficient-wise error bounds directly.

We rewrite two polynomial sets of g and h as follows.

Pcw(g) = {g̃ | g̃ ∈ C[x1], degx1
g̃ ≤ degx1

g, |g̃i − gi| ≤ εg,i, g̃ =
∑n

i=0 g̃ixi
1},

Pcw(h) = {h̃ | h̃ ∈ C[x1], degx1
h̃ ≤ degx1

h, |h̃i − hi| ≤ εh,i, h̃ =
∑m

i=0 h̃ixi
1}.

We have ‖Syl(g̃, h̃) − Syl(g, h)‖2 ≤ ‖E‖2 where

E =

εg,n εh,m

εg,n−1 εg,n εh,m−1 εh,m
... εg,n−1

. . .
... εh,m−1

. . .

...
...

. . . εg,n εh,1
...

. . .
. . .

...
...

... εg,n−1 εh,0 εh,1
...
. . . εh,m

εg,0
...

...
... εh,0

. . .
... εh,m−1

εg,0
...

...
. . .

. . .
...

. . .
...

. . . εh,1

εg,0 εh,0

.

Therefore, any polynomial pair g̃ ∈ Pcw(g) and h̃ ∈ Pcw(h) are coprime if

σn+m(Syl(g, h)) > ‖E‖2. (2)

This inequality is much better than the inequality (1). When we implement recent algorithms, we
should implement also coefficient-wise version of algorithms in this point of view.

Remark 3
For numerical computations, root finding can be done by several numerical methods. Terui and
Sasaki [12] studied computing error bounds (or existence domains) of zeros of empirical polyno-
mials in our coefficient-wise tolerance fashion.

4 Absolute Irreducibility Testing
Absolute irreducibility testing for empirical bivariate polynomials is done by Kaltofen and May’s
algorithm [5] and its variant algorithms [7, 8]. Those algorithms and the primality testing noted
in the previous section have the same property that they use matrices whose elements are directly
generated from coefficients. This means that we can easily extend those absolute irreducibility
testing algorithms to coefficient-wise tolerance, by the same way for the coprimality testing in the
previous section.

At first, we show their original algorithms briefly. In those algorithms [5, 7], we compute a
separation bound B(f) ∈ R>0 for the given polynomial f ∈ C[x1, x2], such that any f̃ ∈ C[x1, x2]

J.JSSAC Vol. 12, No. 3, 2006 25

satisfying ‖ f − f̃ ‖2 < B(f) (and deg(f̃) ≤ deg(f)) is absolutely irreducible. Such a bound can be
computed by using Ruppert matrix R(f) which is the coefficient matrix of a certain linear system
and the size of Ruppert matrix R(f) is (4nm)× (2nm+m−1) where n = degx1

(f) and m = degx2
(f).

Let f (x1, x2) be the following bivariate polynomial

f (x1, x2) =
n∑

i=0

m∑
j=0

ci, jxi
1x j

2, ci, j ∈ C.

The Ruppert matrix R(f) can be written as

R(f) =
n∑

i=0

m∑
j=0

Ri, jci, j, Ri, j ∈ Z(4nm)×(2nm+m−1)
,

where each elements of Ri, j is an integer and defined as the following figure where δi, j denotes
Kronecker delta and the block matrices Gi and Hi are the matrices of sizes 2m × (m + 1) and
2m × (m − 1), respectively. A separation bound can be computed by the following expression, and
we can test its absolute irreducibility by comparing to its error bound in polynomial 2-norm.

B(f) =
√

6 σ2nm+m−1(R(f))/
√

n(m(m + 1)(2m + 1) + (m − 1)(n + 1)(2n + 1)). (3)

The concept of separation bounds is based on treating perturbations by polynomial 2-norm, so
it may be over-estimated if we can use coefficient-wise tolerance for the given polynomial. In fact,
numerical numerator and denominator on the right hand side of the expression (3) is a due to use
polynomial 2-norm. Hence, we extend it to coefficient-wise tolerance.

We rewrite the given polynomial f (x1, x2) with perturbations as follows.

Pcw(f) = { f̃ | f̃ ∈ C[x1, x2], degxi
f̃ ≤ degxi

f ,

| f̃i, j − fi, j| ≤ εi, j, f̃ =
∑n

i=0
∑m

j=0 f̃i, jxi
1x j

2}.

We have ‖R(f̃) − R(f)‖2 ≤ ‖
∑n

i=0
∑m

j=0 Ri, jεi, j‖2 for any polynomial f̃ ∈ Pcw(f). We note that the
above separation bounds are based on Ruppert criterion [10] which guarantees the given poly-
nomial is absolutely irreducible if its Ruppert matrix is of full rank. Therefore, any polynomial
f̃ ∈ Pcw(f) is absolutely irreducible if

σ2nm+m−1(R(f)) > ‖
n∑

i=0

m∑
j=0

Ri, jεi, j‖2. (4)

Remark 4
The above extension is only available for absolute irreducibility testing. Since we have to use the
smallest singular value of the Ruppert matrix, we can not bound each element of the matrix. Hence,
this extension to coefficient-wise tolerance can not be applied to separation bounds.

5 Sparsity of Empirical Polynomials
There is a large difference between coefficient-wise and polynomial norm tolerances especially for
sparse polynomials. For example, we consider the following sparse polynomial and its polynomial
sets.

f (x1) = x7 + 1,
Pcw(f) = { f̃ | f̃ ∈ C[x1], |c̃7 − 1| ≤ 10−2, |c̃0 − 1| ≤ 10−2, f̃ = c̃7x7 + c̃0},
P2(f ,

√
2 · 10−2) = { f̃ | f̃ ∈ C[x1], degx1

f̃ ≤ degx1
f , ‖ f̃ − f ‖2 ≤

√
2 · 10−2}.

26 数式処理第 12巻第 3号 2006

Ri, j =

δi,nGn · · · 0 0 · δi,nHn

δi,n−1Gn−1
. . .

... −δi,n−1Hn−1
...

. . . 0
...

δi,1G1
. . . δi,nGn (1 − n)δi,1H1

δi,0G0
. . . δi,n−1Gn−1 −nδi,0H0

0
. . .

... 0

...
. . . δi,1G1

...

0 · · · δi,0G0 0

0 · · ·

δi,nHn
. . .

0 · δi,n−1Hn−1
. . .

...
. . .

(2 − n)δi,1H1
. . .

(1 − n)δi,0H0
. . .

0
. . .

· · · 0

Hi =

0 · · · 0

δ j,m
. . .

...

δ j,m−1
. . . 0

...
. . . δ j,m

δ j,1
. . . δ j,m−1

δ j,0
. . .

...

. . . δ j,1

0 δ j,0

,

0 0
...

...

0
...

(n − 1)δi,nHn 0
(n − 2)δi,n−1 nHn

×Hn−1
... (n − 1)δi,n−1

×Hn−1

0 · δi,1H1
...

−δi,0H0 δi,1H1

,

Gi =

0 0 · · · 0 0 0

δ j,m−1 −δ j,m
. . .

...
... 0

2δ j,m−2 0
. . . 0

...
...

... δ j,m−2
. . . (2 − m) δ j,m 0

...
...

...
. . .

... (1 − m) δ j,m 0

m δ j,0
...

. . .
...

... −m δ j,m

0 (m − 1) δ j,0
. . . 0

...
...

... 0
. . . δ j,1 −δ j,2

...

0
...

. . . 2δ j,0 0 −2δ j,2

0 0 · · · 0 δ j,0 −δ j,1

.

J.JSSAC Vol. 12, No. 3, 2006 27

The set Pcw(f) is absolutely smaller than another set P2(f ,
√

2 · 10−2) as follows.

x7 + 1.001 ∈ Pcw(f), ∈ P2(f ,
√

2 · 10−2),
1.01x7 + 0.999 ∈ Pcw(f), ∈ P2(f ,

√
2 · 10−2),

x7 + 0.00000001x6 + 1 < Pcw(f), ∈ P2(f ,
√

2 · 10−2),
x7 + 0.01x6 − 0.01x + 1 < Pcw(f), ∈ P2(f ,

√
2 · 10−2).

Hence, we should use coefficient-wise tolerance for such sparse polynomials. However, one may
think that empirical polynomials may have tiny coefficients so we can not use their sparsity. This
is true in some cases, for example, computing Lagrange interpolating polynomials from empirical
data. On the other hand, this is not true in some cases, for example, computing interpolating
polynomials that have only a few terms by least squares. Therefore, we should distinguish exactly
zero coefficients and approximately zero coefficients to operate with empirical polynomials.
>From the above point of view, we can use another algorithm for computing separation bounds.

The author [8] introduced the sparse version of the algorithms noted in the previous section. In the
algorithm (see [8] for details), we compute a separation bound B̄(f) ∈ R>0 for the given polynomial
f ∈ C[x1, x2], such that any f̃ ∈ C[x1, x2] satisfyingP(f̃) ⊆ P(f) and ‖ f − f̃ ‖2 < B̄(f) is absolutely
irreducible, where P(p) means the Newton polytope of a polynomial p. We note that the Newton
polytope of a polynomial p =

∑
i, j ai, jxiy j is defined as the convex hull in the Euclidean plane

R2 of the exponent vectors (i, j) of all the nonzero terms of p. Hence, we are encouraged to use
this algorithm to compute separation bounds of empirical polynomials which have exactly zero
coefficients in part.

Remark 5
We note that the algorithm [8] uses another certain matrix R(f) which is similar to Ruppert matrix
and have the same shape of Ruppert matrix but some columns are zeros (the integer matrices
Ri, j are the same). The criterion due to Gao and Rodrigues [2] requires computing the (ρ − 1)-
th largest singular value while the criterion due to Ruppert requires the (2nm + m − 1)-th largest
value, where ρ − 1 denotes a certain integer that is smaller than 2nm + m − 1 mostly. Hence, for
absolute irreducibility testing, we are also encouraged to use this algorithm for sparse empirical
polynomials.

6 Examples
In this section, examples showing that coefficient-wise tolerance is better than polynomial norms,
are presented. We note that numbers in this section are rounded at the fifth significant digit.

At first, we consider the following two polynomials and their coprimality.

g(x1) = x7
1 + 1.1, h(x1) = x2

1 − 1.

We suppose that any non-presented coefficient is exactly zero and any presented coefficient can be
perturbed within 0.01 at most such that εg,7 = εg,0 = εh,2 = εh,0 = 0.01 and εg = εh = 0.01

√
2. In

this case, we can not determine their coprimality if we use the polynomial norm tolerance. Because
we have

σn+m(Syl(g, h)) = 0.02137,
√

mε2
g + nε2

h = 0.04243.

However, we can say that they are coprime if we use the coefficient-wise tolerance. Because we
have

σn+m(Syl(g, h)) = 0.02137, ‖E‖2 = 0.02000.

28 数式処理第 12巻第 3号 2006

Next, we consider the absolute irreducibility of the following bivariate polynomial.

f (x1, x2) = x3 − y3 + 0.001.

We suppose that any non-presented coefficient is exactly zero and any presented coefficient can be
perturbed within 0.00045 at most such that ε3,0 = ε0,3 = ε0,0 = 0.00045 and ε f = 0.00045

√
3 ≈

0.0007794. In this case, we can not determine its absolute irreducibility if we use the polynomial
norm tolerance. Because we have the following separation bound B(f) which is less than ε f , so
there are possibilities that its Ruppert matrix R(f) becomes a rank deficient matrix.

B(f) = 0.0003586.

Moreover, we can not determine its absolute irreducibility even if we use the coefficient-wise tol-
erance without using its sparsity. Because we have

σ2nm+m−1(R(f)) = 0.002121, ‖
n∑

i=0

m∑
j=0

Ri, jεi, j‖2 = 0.002277.

This also means that there are possibilities that its Ruppert matrix R(f) becomes a rank deficient
matrix. However, we can say that it is absolutely irreducible if we use the coefficient-wise tolerance
with using its sparsity. Because we have

σρ−1(R(f)) = 0.002121, ‖
n∑

i=0

m∑
j=0

Ri, jεi, j‖2 = 0.001909.

This means that its sparse Ruppert matrix R(f) can not become any rank deficient matrix, so the
given polynomial is absolutely irreducible within the given error bound.

7 Conclusion
It is absolutely clear that the coefficient-wise tolerance is better than the polynomial norm tolerance
to operate with empirical polynomials. However, unfortunately, most of algorithms implemented
in several computer algebra systems have not been implemented with both the tolerance systems
together, especially not with the coefficient-wise tolerance. As shown in this paper, it is not difficult
to extend the algorithms to the coefficient-wise tolerance, especially for some certain algorithms
using coefficients directly. However, for other algorithms which use coefficients indirectly for
example, extending to the coefficient-wise tolerance is not easy. The author thinks that all the
researchers in symbolic-numeric algorithms for polynomials, should implement their algorithms
using both tolerance mechanisms.

Moreover, there is a package for Mathematica, which is called “SNAP” [6], is made by the
same author of this paper and it provides coprimality testing, absolute irreducibility testing and so
on, using coefficient-wise tolerance also.

References
[1] Emiris, Ioannis Z., Galligo, André and Lombardi, Henri: Certified approximate univariate

GCDs, J. Pure Appl. Algebra, 117/118, 1997, 229–251.

J.JSSAC Vol. 12, No. 3, 2006 29

[2] Gao, S. and Rodrigues, V. M.: Irreducibility of polynomials modulo p via newton polytopes,
J. Number Theory, 101, 2003, 32–47.

[3] Golub, G. H. and Loan, C. F. V.: Matrix Computations Third Edition, Johns Hopkins Series
in the Mathematical Sciences, The Johns Hopkins University Press, Baltimore, 1996.

[4] Kako, F. and Sasaki, T.: Proposal of “effective floating-point number” for approximate alge-
braic computation, preprint, 1997.

[5] Kaltofen, E. and May, J.: On approximate irreducibility of polynomials in several variables,
Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation,
2003, 161–168.

[6] Nagasaka, K.: SNAP Package for Mathematica and Its Applications, Proc. 9th Asian Tech-
nology Conference in Mathematics, 2004, 308-316.

[7] Nagasaka, K.: Towards More Accurate Separation Bounds of Empirical Polynomials,
SIGSAM Bulletin, Formally Reviewed Articles, 38(4), 2004, 119–129.

[8] Nagasaka, K.: Towards More Accurate Separation Bounds of Empirical Polynomials II, Proc.
Computer Algebra in Scientific Computing 2005 (CASC2005), Lecture Notes in Computer
Science, LNCS 3718, 318–329.

[9] Pan, V. Y.: Computation of approximate polynomial GCDs and an extension, Inform. and
Comput., 167(2), 2001, 71–85.

[10] Ruppert, W. M.: Reducibility of polynomials f (x, y) modulo p, J. Number Theory, 77, 1999,
62–70.

[11] Sofroniou, M. and Spaletta. G.: Precise Numerical Computation, J. Logic and Algebraic
Programming, 64(1), 2005, 113–134.

[12] Terui, A. and Sasaki, T.: “approximate zero-points” of real univariate polynomial with large
error terms, IPSJ J., 41, 2000, 974–989.

[13] Zeng, Z.: The approximate GCD of inexact polynomials. Part I: a univariate algorithm,
manuscript, 2004.

[14] Zhi, Lihong: Displacement structure in computing approximate GCD of univariate polyno-
mials, Lecture Notes Ser. Comput., 10, 2003, 288–298.

	Introduction
	Coefficient-wise and Polynomial Norm Tolerance
	Coprimality Testing
	Absolute Irreducibility Testing
	Sparsity of Empirical Polynomials
	Examples
	Conclusion

