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Abstract

Stability is a fundamental problem in control systems. The basic problem is mathematically described
as “Decide whether or not a given univariate polynomial has all roots in the left half part of the
complex number plane without prior computation of the roots,” and was solved by Routh and Hurwitz
independently. Much later, Strelitz presented an algorithm to decide a polynomial to be stable without
division by any coefficients of the polynomial. This is a favorable property for an algorithm to find
a necessary and sufficient condition for polynomials with symbolic parameters to be stable. In this
article, applying the Strelitz test for parametric polynomials are presented, and how a typical stability
problem, i.e., D-stability, is translated into the scope of the Strelitz test.

1 Introduction
Stability is a fundamental problem in control systems. The basic problem is mathematically de-
scribed as “Decide whether or not a given univariate polynomial has all roots in the left half part of
the complex number plane without prior computation of the roots,” and was solved by Routh and
Hurwitz independently.

Among variety of works, Kimura and Hara[3][4] showed a considerably wide class of design
problems in robust control systems, including stability related problems, can be formulated as
sign definite condition (SDC) problems, and presented a primitive algorithm based on Euclidean
remainder sequence to convert original problems to SDC.

Then later, Anai and Hara[1][2] reformulated SDC problem as a special quantifier elimination
problem, and showed it is solved smartly and more efficiently through Sturm-Habicht sequence
computation. Their method is well applicable for exceptional cases when the Euclidean sequence
becomes abnormal by the instantiation (specialization) of symbolic parameters.

In this article, we show that typical D-stability problems, treated in the above papers, can be
and much better be solved by an alternative formulation without SDC reformulation. They can be
solved directly as stable polynomial problems based on “sum-of-roots polynomial” introduced by
Strelitz[5]. In view of algebraic computation, the presented method bears superior properties over
that of SDC.
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2 Sum-of-roots polynomial and the Strelitz test for a stable
polynomial

An univariate polynomial with real coefficients is called a stable polynomial if all of its roots lie
in the left half part of the complex plane (left half plane, in short.) Routh-Hurwitz test is a well
known decision procedure for a polynomial to be stable.

The Strelitz test is an alternative one, which has good properties in view of algebraic computa-
tion, subsequently gives better performance to polynomials with symbolic coefficients.

Remark 1
Routh-Hurwitz criterion is computed through a process equivalent to counting the number of roots
(a modified polynomial remainder sequence or subresultant sequence), while the Strelitz criterion
does not attempt to count roots in its computing process. Routh-Hurwitz criterion is considered
over-quality when only stability is in question.

Now we introduce the key object sum-of-roots polynomial for the Strelitz test. Let f ∈ R[z] be a
monic polynomial with a positive degree n, and {αi}i=1,...,n be the set 1) of all roots of f . Define a
new polynomial g ∈ R[z], monic with degree n(n−1)

2 , by

g =
∏

1≤i< j≤n

(z − (αi + α j)).

Then, g is called the sum-of-roots polynomial of f .
Note that, every coefficient of g is real since every root αi + α j has its conjugate among {αi +

α j}1≤i< j≤n.
To compute g efficiently, Strelitz shows an algorithm based on Newton-Girard formulae, which

will be described in a later section.
We may consider a bigger sum-of-roots polynomial G of f defined by

G =
∏

1≤i, j≤n

(z − (αi + α j)) = 2n f (
z
2

) × g(z)2.

Then, by the definition of resultant, it is easy to see that

G = rest( f (t), f (z − t)).

One might use this resultant to obtain g, but, mainly due to space problem, it is applicable only for
a small f , i.e., with very small n and having small number of parametric (symbolic) coefficients
which necessarily appear in f for design problems.

We prepare two propositions before stating the main property of the sum-of-roots polynomial.

Proposition 2
If f is stable, then g is also stable.

Proof Since every root of g is the sum of two roots of f , both lying in the left half plane, it
consequently lies in the left half plane.

Proposition 3
Let f ∈ R[z] be monic. Then, the following two statements cannot hold at the same time.

1)Strictly speaking, we have to use “multi-set of roots,” although we use “set of roots” according to the custom.
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1. All the coefficients of f are positive.

2. f has a non-negative real root.

Proof Assume both of the statements hold. Then, the second statement says there is a non-
negative real number, say γ, satisfying f (γ) = 0. But, by the first statement, f (γ), being the sum
of products of positive coefficients and non-negative powers of γ, never becomes 0. This is a
contradiction.

The main property of the sum-of-roots polynomial is now stated as follows.

Theorem 4 (Strelitz)
A monic polynomial f with real coefficients is stable if and only if the coefficients of both f and
its sum-of-roots polynomial g are all positive.

Proof (only if part): Assume f is stable. Then, if f has a real root, say γ, it is negative. Thus, f
has a linear factor (z − γ), the coefficients of which, 1 and −γ, are clearly positive. And if f has a
pair of conjugate roots, say α and α, f has a quadratic factor (z− α)× (z− α) = z2 − (α+ α)z+ αα,
the coefficients of which are again obviously positive since the real part of α, and that of α too, are
negative for stable f . Because f is nothing but the product of all these linear factors and quadratic
ones with multiplicity counted, all of its coefficients must be positive. Since g is also stable by
Proposition 2, all of its coefficients are positive by the same argument.

(if part): Assume all the coefficients of both f and g are positive. Then, if f has a real root,
say γ, it must be negative by Proposition 3. If f has a pair of conjugate roots, say α and α, g has
a root α + α, which is a real number. Here, Proposition 3 applied for g again tells that α + α must
be negative, which in turn means the real part of α is negative. Thus, every root of f lies in the left
half plane. Therefore, f is stable, and hence g is also stable by Proposition 2.

In this paper, we call the condition for a polynomial to be stable described in Theorem 4 the
Strelitz condition or the Strelitz criterion, and the decision procedure based on it the Strelitz test.

Remark 5
If f (z) monic has imaginary coefficients, then we will apply the theorem to f (z) f (z) ∈ R[z] for
testing all the roots of f lie in the left half plane.

3 Computing the sum-of-roots polynomial
The coefficients of the sum-of-roots polynomial g defined in section 2 are all symmetric with re-
spect to the roots of f , and therefore integral polynomials in the coefficients of f .

Strelitz presented an algorithm to compute g efficiently through power-sums. The algorithm
computes the coefficients of g from the coefficients of f , by using Newton-Girard formulae for
power-sums of polynomial roots, together with his recurrence formula which relates power-sums
of roots of f and those of g.

Put f = anzn + an−1zn−1 + · · · + a1z + a0 and g = bmzm + am−1zm−1 + · · · + b1z + b0 for positive n
and m = n(n−1)

2 with an = 1 and bm = 1.
Let {αi}i=1,...,n be the set of all n roots of f , and {βi}i=1,...,m = {αi + α j}1≤i< j≤n be the set of all

m = n(n−1)
2 roots of g.

Moreover, we introduce the power-sums of f and g, by putting σ j =
∑n

i=1 α
j
i , ( j = 0, 1, ...,m)

and s j =
∑m

i=1 β
j
i , ( j = 0, 1, ...,m) respectively.
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Then, the computation of g from f is sketched by the algorithm (Algorithm 6) below which
consists of three steps.

Algorithm 6 (SORP: sum-of-roots polynomial)
Input: coefficients {ai}i=0,...,n of monic polynomial f ∈ R[z];
Output: coefficients {bl}l=0,...,m of the sum-of-roots polynomial of f ;

Step 1: Represent σ j by ai, (i = 0, 1, ..., n) for j = 0, 1, ...,m.
Step 2: Represent sk by ai, (i = 0, 1, ..., n), through σ j, ( j = 0, 1, ...,m) which are

computed in Step 1, for k = 0, 1, ...,m.
Step 3: Represent bl by ai, (i = 0, 1, ..., n), through sk, (k = 0, 1, ...,m) which are

computed in Step 2, for l = m,m − 1, ..., 0.

In the following subsections, recurrence formulae to the above Algorithm 6 will be given.

3.1 Power-sums and coefficients of a polynomial
In Step 1 and Step 3 of Algorithm 6, well-known Newton-Girard formulae are used.

Newton-Girard formulae for ai and σ j are described as follows.

σ0 = n,

σ1 + an−1 = 0,
σ2 + σ1an−1 + 2an−2 = 0, (1)

...

σn + σn−1an−1 + 2σn−2an−2 + · · · + na0 = 0.

And for j > n,
σ j + σ j−1an−1 + · · · + σ j−na0 = 0.

By using these formulae as recurrence relations, we can compute σ j, a polynomial in ai’s,
successively upwards for j = 0, 1, 2, ...,m.

Note: We need no divisions but only ring operations on Z[an, ..., a0] in the process.
Newton-Girard formulae for sk and bl are obtained by replacing symbols m, bl, sk for n, ai, σ j,

respectively, in equations (1). And by using the formulae as recurrence relations, we can compute
bl from sk successively downwards for l = m,m − 1, ..., 1, 0.

Note: In this process, we need exact division by integers besides ring operations on Z[sm, .., s0],
and subsequently, on Z[an, ..., a0], since sk’s are known to be integral in an, ..., a0 by the formulae
shown in the next subsection.

3.2 Power-sum relationships
Strelitz presented recurrence formulae that relate power-sums ({s j} j=0,1,...,m) for g to those ({σi}
i=0,1,...,m) of f , viz.,

2s j =

j∑
p=0

 j

p

σpσ j−p − 2 jσ j, ( j = 0, 1, ...,m). (2)
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Equation (2) is derived from the following identity. n∑
k=1

eαk ·t
2 = n∑

k=1

e2αk ·t +
n∑

p,q=1,p,q

e(αp+αq)t.

Expanding exponential functions in both sides of the above equation in Taylor series, and collecting
terms of the same powers of t, we get ∞∑

j=0

1
j!
σ jt j

2 = ∞∑
j=0

2 j

j!
σ jt j +

∞∑
j=0

2
j!

s jt j.

Equating the coefficients of the same degree in t on the both sides, we get

j∑
p=0

1
p!( j − p)!

σpσ j−p =
2 j

j!
σ j +

2
j!

s j ( j = 0, 1, ....).

Multiplying both sides by j! and expressing 2s j in the other two terms give the result.
Note: Equation (2) tells that to represent s j in σi, we need division by 2 besides ring operations

on Z[σm, ..., σ0], and further consideration tells that the division is an exact one in operating in
Z[an, an−1, ..., a0].

Taking the above three notes into account, we need only operating in Z[an, an−1, ..., a0] in the
whole process to obtain the sum-of-roots polynomial. This is the reason, the sum-of-roots can be
used to get stability conditions for polynomials with symbolic parameters.

4 Strelitz test as a special QE
Decision procedure for a polynomial being stable can be considered as a special quantifier elimi-
nation (QE) procedure that eliminates the main variable from the given polynomial yielding “true”
or “false” as a result. Further, if we take the coefficients from a polynomial ring R[p] where
p = (p1, ..., pk) are real valued parameters, the same process naturally gives a condition for the
question(proposition) to be true. The resulting condition is expressed as a first order logic formula
which is composed of atomic formulae with logical connectives, e.g., disjunction, conjunction and
negation, where an atomic formulae is either an equality or inequality of polynomials (sometimes
rational functions) in p.

Polynomials with such an extended coefficient domain usually appear in design problems. And
as other procedures originally designed for constant coefficients met with instantiation (specializa-
tion) problems, so does the Strelitz test meet with leading coefficient problems described in the
next section.

5 Leading coefficient problem
The sum-of-roots polynomial defined in section 3 is computed only for monic polynomials with
real coefficients. As far as polynomials that have only number coefficients is concerned, this is of
no problem, theoretically at least. We can always normalize the polynomial in question to a monic
polynomial, preserving roots unchanged, by multiplying the reciprocal of its leading coefficient a
number.
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For design problems, however, we often have to deal with polynomials with several unknown
parameters in their coefficients. Of course, sum-of-roots polynomial is in principle applicable to
such cases to some extent, if we dare to operate in rational function domain.

Three problems arise, however. One is the complexity increase when we deal with rational
function coefficients. The second, more essential, is homomorphism anomaly that inevitably arise
from instantiation of parameters to number values. Plainly and simply speaking we have to take
care of the cases where the leading coefficient of f vanishes by instantiation. The last problem is
rather practical one. We have always take care of sign constraints of the leading coefficients of the
polynomials in the process.

Remark 7
Sturm-Habicht sequence is an amendment to Sturm sequence and the subresultant sequence for
avoiding rational function coefficients and the homomorphism anomaly as well as sign constraint
problems.

In the following, two methods are proposed to solve those problems when applying the Strelitz
criterion to polynomials with a non-number leading coefficient.

5.1 Formal reciprocal method
We first consider the case where the leading coefficients do not vanish, and next the case they do
vanish.

non-vanishing leading coefficient case: If the leading coefficient of f is a polynomial in several
parameter variables, we shall modify computation of g as follows.

Let
f = anzn + an−1zn−1 + · · · + a1z + a0

such that an ∈ R[p]\R.
Introduce a new indeterminate, say t, and multiply it to f . Then, replace only the leading

coefficient tan of t f by 1 so that we obtain

ft = t f = zn + tan−1zn−1 + · · · + ta1z + ta0. (3)

At the same time, we shall keep a new equality that means non-vanishing condition for the leading
coefficient an,

tan = 1 (4)

as a constraint condition for later recovery of g. By this constraint, an cannot become 0, and t stands
for a rational function 1

an
, a formal reciprocal to an. Note that this modified monic polynomial

ft ∈ R[t, p][z] has the same roots as f does for the same instantiation of p (and for induced
instantiation of t) except for the homomorphism anomaly case, which we explain later.

Then, for this modified monic polynomial ft ∈ R[t,p][z], we can compute its sum-of-roots
polynomial gt by the procedure sketched in Algorithm 6 in section 3 without operating in the
rational function domain. Then, g, the sum-of-roots polynomial of f , can be recovered from gt by
replacing 1

an
for t in gt by using the constraint (4).

Thus, in this case the coefficients of g may usually have denominators of powers of an. In
subsequent applications, our interest is concerned with only the positiveness of the coefficients of
g. Therefore, in the actual computation, we can cancel the denominators of g by multiplying an
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appropriate powers of an. In such a case, we must be careful of the sign change of constraints on
coefficients. For uniform treatment the multiplier may well be taken from even powers of an.

The condition for f being stable varies according to the two possibilities of constraint for an,
i.e., an > 0 or an < 0.

In case of an > 0, it is stated that the coefficients of f and g are all positive. And, in case of
an < 0, it is stated that the coefficients of f are all negative, and the coefficients of g are all positive.

vanishing leading coefficient case: If the leading coefficient of f is to vanish, i.e., for the case
where we set up a condition

an = 0, (5)

we simply recurse the problem to that of stable polynomial problem of fR with a formal degree
n − 1 defined by

fR = an−1zn−1 + an−2zn−2 + · · · + a1z + a0

with the constraint condition (5). This recursive reduction of the problem terminates when the
formal degree of fR becomes 0.

Remark 8
It may possible we have a disjunction of stable conditions for n recursively generated polynomials.
We can stop recursion as soon as the leading coefficient becomes a number.

Below, we show a basic algorithm for a special QE based on the formal reciprocal method described
above, where the formal reciprocals and their constraints remain in the resulting formula..

We define and use several auxiliary functions in the algorithm: LC( f ) for the leading coefficient
of f , SORP( f ) for the sum-of-roots polynomial of monic f , and REST( f ) for the polynomial
f − Lt( f ), where Lt( f ) stands for the leading term of f .

For f ∈ R[p][z] with degz( f ) ≥ 0, function StableCond1( f ) defined by Algorithm 9 returns a
first order logic formula, in p and also in dynamically generated indeterminate t’s, which gives an
equivalent condition for f to be stable.

Algorithm 9 (StableCond1)
function StableCond1( f )

begin
if degz( f ) = 0 then return (true);
if LC( f ) ∈ R then

begin
f ′ := f /LC( f );
let f ′ =: zn + a′n−1zn−1 + · · · + a′1z + a′0;
g := SORP( f ′);
let g =: zm + bm−1zm−1 + · · · + b1z + b0;
return ((a′n−1 > 0) ∧ · · · ∧ (a′1 > 0) ∧ (a′0 > 0)

∧ (bm−1 > 0) ∧ · · · ∧ (b1 > 0) ∧ (b0 > 0))
end

else
begin

Choose a new indeterminate t;
Construct ft from f defined by equation (3);
g := SORP( ft);
let f =: anzn + an−1zn−1 + · · · + a1z + a0;
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let g =: zm + bm−1zm−1 + · · · + b1z + b0;
PositiveCase := (tan = 1) ∧ (t > 0) ∧ (an > 0) ∧ (an−1 > 0) ∧ · · · ∧ (a1 > 0)

∧ (a0 > 0) ∧ (bm−1 > 0) ∧ · · · ∧ (b1 > 0) ∧ (b0 > 0);
NegativeCase := (tan = 1) ∧ (t < 0) ∧ (an < 0) ∧ (an−1 < 0) ∧ · · · ∧ (a1 < 0)

∧ (a0 < 0) ∧ (bm−1 > 0) ∧ · · · ∧ (b1 > 0) ∧ (b0 > 0);
NullCase := (an = 0) ∧ StableCond1( REST( f ) );
return ( PositiveCase ∨ NegativeCase ∨ NullCase )

end
end

Remark 10
There can be several variations of the algorithm depending on the way how we treat t, the formal
reciprocal. Indeterminate t’s differ from each other at each recursive invocation of the function
StableCond1( f ). Thus for Algorithm 9, at most n different t’s can appear in the resulting first order
logic formula. We can take another way where we replace 1

an
for t at each assignment statement for

the program variables, PositiveCase and NegativeCase, at every recursive invocation. It is a matter
of simplification of the resulting logic formula, and we leave it for another study.

Remark 11
In actual implementation, we have to be careful not to attempt to violate the operation ordering of
the first order logic formulae in the computing process. In the algorithm shown above, we preferred
simplicity than formality. This remark also applies to Algorithm 12 shown in the next subsection.

5.2 Scalar linear conversion of coordinate
For the second alternative, we make use of a well known convention to convert a non-monic poly-
nomial into a monic one for factoring univariate integral polynomials.

For the case where the leading coefficient an to vanish, we shall take the same treatment as in
the previous paragraph 5.1. So, we describe here only the case where an , 0.

A monic polynomial fM ∈ R[p][w] is obtained by

fM = an−1
n f (

w
an

). (6)

Because, if an instantiation of an is negative, this scalar linear transformation z 7→ w causes
transposition with respect to the origin, and subsequently yields swapping of the left and right half
planes, we have to take care of such a case.

For the case where the leading coefficient an is constrained to be positive, i.e., an > 0, the
positiveness of the coefficients of the sum-of-roots polynomial gM of fM gives, together with the
positiveness of the coefficients of f , the desired condition for f being stable.

On the other hand, for the case of the leading coefficient an being negative, i.e., an < 0, we
must use

f̂M(w) = (−1)n fM(−w) = (−1)nan−1
n f (

−w
an

) (7)

instead of fM defined by (6). In this case, the positiveness of the coefficients of the sum-of-roots
polynomial ĝM of f̂M gives, together with the negativeness of the coefficients of f , the desired
condition for f to be stable.

Below, we show a basic algorithm based on the scalar linear conversion described above. We
assume the same setting for f and use the same auxiliary functions as in Algorithm 9.
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Algorithm 12 (StableCond2)
function StableCond2( f )

begin
if degz( f ) = 0 then return (true);
if LC( f ) ∈ R then

begin
f ′ := f /LC( f );
let f ′ =: zn + a′n−1zn−1 + · · · + a′1z + a′0;
g := SORP( f ′);
let g =: zm + bm−1zm−1 + · · · + b1z + b0;
return ((a′n−1 > 0) ∧ · · · ∧ (a′1 > 0) ∧ (a′0 > 0)

∧ (bm−1 > 0) ∧ · · · ∧ (b1 > 0) ∧ (b0 > 0))
end

else
begin

Construct fM from f defined by equation (6);
Construct f̂M from f defined by equation (7);
gM := SORP( fM);
ĝM := SORP( f̂M);
let f =: anzn + an−1zn−1 + · · · + a1z + a0;
let gM =: zm + bm−1zm−1 + · · · + b1z + b0;
let ĝM =: zm + b′m−1zm−1 + · · · + b′1z + b′0;
PositiveCase := (an > 0) ∧ (an−1 > 0) ∧ · · · ∧ (a1 > 0) ∧ (a0 > 0)

∧ (bm−1 > 0) ∧ · · · ∧ (b1 > 0) ∧ (b0 > 0);
NegativeCase := (an < 0) ∧ (an−1 < 0) ∧ · · · ∧ (a1 < 0) ∧ (a0 < 0)

∧ (b′m−1 > 0) ∧ · · · ∧ (b′1 > 0) ∧ (b′0 > 0);
NullCase := (an = 0) ∧ StableCond2( REST( f ) );
return ( PositiveCase ∨ NegativeCase ∨ NullCase )

end
end

6 Problem formulation in the Strelitz test
In this section, we show how a typical problem in robust control system design is translated into
the scope of the Strelitz test. The example problems are taken from [3].

6.1 D-stability
D-stability, viewed from our stand point, is a problem to obtain an equivalent condition for a
polynomial with real parametric coefficients to have all roots in a specified area D in the complex
number plane. Although it is trivial that arbitrary area cannot be dealt with, we do not go into this
problem and only exemplify a basic set of possible D’s.

Because any circle in the complex sphere can be mapped to each other by a linear fractional
transformation of the complex sphere, we can transform the interior of any circle, including any
half plane divided by any straight line on the complex plane, into the left half plane, so that our
purpose can well be achieved by the Strelitz test.
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Note that, if we can deal with areas D1,D2, then we can do with D1 ∩ D2 as well, because the
answer of the problem for D1 ∩ D2 is given by a conjunction of the answers for D1 and D2.

We show two basic examples that can be dealt with by the Strelitz test.

Circled area: The problem here is to obtain the condition for a given polynomial f ∈ R[p][z],
degz f = n > 0 to have all roots in D, the interior of a circle described by the following inequality
for z ∈ D:

(z − c)(z − c) < r2,

where r > 0 and c ∈ C. (The boundary is a circle centered at c with radius r.) In practical settings,
c will be a negative real number and D will have no common point with the right half plane (and
consequently with the imaginary axis, too).

Area D, the interior of the given circle, is transformed into the left half plane by a linear frac-
tional transformation z 7→ w such that

w =
(z − c) + r
(z − c) − r

.

The inverse transformation is given by

z = r
w + 1
w − 1

+ c.

Therefore, if we can assume c a real number as a practical assumption, the problem is to find
an equivalent condition for a polynomial f̃ ∈ R[p][w] to have all roots in the left half plane, where
f̃ with degw( f̃ ) = n, is defined by

f̃ (w) = (w − 1)n f (r
w + 1
w − 1

+ c).

Thus, the problem is nothing but to find an equivalent condition for f̃ to be stable, and it is of
no doubt that the Strelitz test readily carry it out.

If we do wish to deal with a case for an imaginary c, then construct

F(w) = f̃ (w) f̃ (w) ∈ R[p][w],

and put it for the Strelitz test with paying an extra cost for the doubled degree.

Remark 13
A practical example for an imaginary c may appear in the situation where D = D1 ∩ D2 such that
D1 and D2 are circled areas centered at c and c respectively, and share a non-empty interval on the
real axis. For such a situation, the condition for F(w) to be stable gives a D-stability of f (z).

Wedge-shaped area: Another example for D is a wedge-shaped area given by a set intersection
of two half plane D1 and D2, i.e., D = D1 ∩ D2. Our mission is to find an equivalent condition that
all the roots lie in D.

Because we are dealing with f ∈ R[p][z] such that p are real parameters, and hence the roots
are located symmetrically with respect to the real axis, the wedge-shaped area D can be assumed,
without loss of generality, to be symmetric with respect to the real axis. By this, we are allowed to
test only any one of the half plane components, say D1 of D, since if a root α is located in D1 but
not in D2, the conjugate α is not located in D1, and this violation of the questioned condition shall
be detected as soon as it is tested for D1.
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Let D1 be specified such that its boundary line passes through z1 ∈ C and cross the real axis at
c ∈ R, and be located on the left side of the vector z1 − c on the boundary line.

Then, D1 is described by the following inequality for z ∈ D1.

i (z1 − c)(z − c) − i(z1 − c)(z − c) < 0.

D1 is transformed into the left half plane by

w = i (z1 − c)(z − c).

This is also a kind of linear fractional transformation with only shifting, rotation and stretching or
shrinking. Its inverse map is

z =
1

i (z1 − c)
w + c.

Therefore, D-stability of f is transformed into the usual stability of f̃ (w) defined by

f̃ (w) = f (
1

i (z1 − c)
w + c).

Unfortunately f̃ (w) may usually contain imaginary coefficients. The Strelitz test is applied to the
following F.

F(w) = f̃ (w) f̃ (w) ∈ R[p][w].

7 Discussions
In papers [3] and [4], it is claimed that major problems in control system design can be effectively
transformed into SDC. And in papers [1] and [2], SDC with parameters can be solved efficiently
by Sturm-Habicht sequence computation.

There are, however, several examples that are suited for another reformulation in the point of
computational complexity and simplicity of the algorithm. Some of the reformulation to the SDC
problems presented in those papers takes rather long detour arriving at the usual stability problems,
i.e., finding the conditions for a polynomial to have all roots on the left half plane, although at a
glance its appearance is different. Typical one is the D-stability problem reformulation in [3].

Here, we explain their reformulation process in our terminology for comparison. In the follow-
ing, we use < f1, ..., fs > for a polynomial ideal generated by f1, ..., fs, and ZeroC(I) for the set of
complex zeros of ideal I, ZeroR(I) for the set of real zeros of ideal I.

1. The problem is to decide or to find the condition for a polynomial f (z) to have all the roots in
specified area D ⊂ C.

2. The complex plane C is identified with the Euclidean plane R2, so that D ⊂ R2. Then, the
problem is translated into a real bi-variate problem to decide or to find the equivalent condition
for the statement ZeroR(< fr(x, y), fi(x, y) >) ⊂ D ⊂ R2, where f (x + iy) =: fr(x, y) + i fi(x, y).

3. D is mapped into the left half of the Euclidean plane R<0 ×R ⊂ R2. And the statement
ZeroR(< fr(x, y), fi(x, y) >) ⊂ D is translated into ZeroR(< gr(t, ω), gi(t, ω) >) ⊂ R<0 ×R,
where g(t + iω) = gr(t, ω) + igi(t, ω) holds for some fortunate and convenient g(z) ∈ R[z].
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4. Let m(t) be a multiple of the minimal polynomial of t with respect to the ideal < gr(t, ω),
gi(t, ω) >. Then, the problem in R2 is translated into SDC of m(t), i.e., to decide or to find the
condition for m(t) to have no roots in [0,+∞), and also into a supplemental work, to decide or
to find the condition for no real ω to satisfy gr(τ, ω) = gi(τ, ω) = 0 when m(t) happens to have
a root τ ∈ [0,+∞) 2).

5. SDC is solved by Sturm-Habicht sequence computation.

The 3rd problem is nothing but an usual stability problem if the translation of D into R<0 ×R
is obtained by a linear fractional transformation. The two examples, in [3] are just such ones,
although it was described in terms of the coordinates on the Euclidean plane. As a conclusion,
the 4th step is extraneous; 2nd and 3rd steps together can better be replaced by a linear fractional
transformation; then subsequently, the last step can be replaced by the Routh-Hurwitz test, or better
be done by the Strelitz test.

We mention that “gain margin” problem is solved by the Strelitz condition as well. Research
into more problems will find such problems which can better be dealt with by the Strelitz test.

8 Conclusion
Applying the Strelitz test for parametric polynomials and formulating a typical stability problem
in the Strelitz condition are presented. Although its applicability is limited to problems which are
translated into stability problems, the simple structure of the algorithm is preferable for symbolic
computation.

Finally, the author would like to mention that we can efficiently compute the (second) largest
sum-of-roots polynomial defined by

GL(z) =
∏

i1

(z − αi1 ) ·
∏
i1<i2

(z − (αi1 + αi2 )) · · ·
∏

i1<i2<···<in

(z − (αi1 + αi2 + · · ·αin )),

if we apply a similar method to compute the (small) sum-of-roots polynomial for each factor of GL

separately.
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