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Abstract

Let M4(C) be all affine conjugacy classes of quartic polynomials. We define a projection Ψ4 from
M4(C) to C3 via the elementary symmetric functions of the multipliers of the fixed points. In [2],
we show Ψ4 is not surjective. The image of M4(C) under Ψ4 is denoted by Σ(4). The complement
E(4) = C3 \ Σ(4) is called the exceptional set. On a part of the real section of E(4), we verify
that a quartic polynomial degenerates into “twins” of quadratic polynomials. We conjecture that this
phenomena holds on E(4).

1 Introduction
Let Poly4(C) be the space of all quartic polynomials, and M4(C) be the space of all affine conjugacy
classes of quartic polynomials. We define a projection Ψ4 from M4(C) to C3 via the elementary
symmetric functions of the multipliers of the fixed points. In [2], we show the projection is not
surjective. The image of M4(C) under Ψ4 is denoted by Σ(4), the complement C3 \ Σ(4) by E(4)
called the exceptional set. For the cubic (resp. quadratic) polynomials, the exceptional set is empty.
Unfortunately it can happen that the exceptional set E(n) is nonempty for n = 4 (see [2] and [3]).

This paper consists of two parts, one is devoted to defining an algebraic variety G(c), the other
to analizing dynamics of Poly4(C) on neighborhood of E(4).

First, we can define an algebraic variety G(c), given in Section 2, that indicates essential prop-
erty of the projection Ψ4. We can derive defining equations of the exceptional set and of the branch
locus from the perspective of G(c). We mainly use the symbolic and algebraic computation system
Risa/Asir to obtain an algebraic variety G(c).

Second, we examine dynamical behavior on the parameter space Σ(4)∪E(4). We have Theorem
16 in Section 5.

Theorem 16
There is a component D ⊂ Σ(4) such that two polynomial-like maps (U, V, p) ∼hb z2 + c
and (Ũ, Ṽ , p) ∼hb z2 + c̄ are constructed for any 〈p〉 ∈ D, and c and c̄ converge to a
common value c̃ ∈ R as 〈p〉 → E(4). The limit value c̃ depends only on the landing point
(4, s, (s−4)2

4 ) ∈ E(4) and is written by c̃ = s−4
8 .
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Because the parameter values (corresponds to the “multipliers”) on E(4) forms µ, µ, 2 − µ, 2 − µ,
the following conjectures Conjecture 15 and Conjecture 17 seem very likely.

Conjecture 15
On the exceptional set, a quartic polynomial degenerates into “twins” of quadratic polyno-
mials conjugate to z2 + c for some c.

Conjecture 17
None of quartic polynomial p has two disjoint quadratic-like restrictions of p such that both
quadratic-like map are hybrid equivalent to a common quadratic polynomial z2 + c, c ∈
M \ { 14 }, where M is Mandelbrot set.

These conjectures, given in Section 5, back with the reason why the exceptional set is not empty.

2 Definitions and Notations
Let Poly4(C) be the space of all polynomials of the form:

p(z) = a4z4 + a3z3 + a2z3 + a1z + a0 (a4 , 0).

Two maps p1, p2 ∈ Poly4(C) are holomorphically conjugate, denoted by p1 ∼ p2, if and only if
there exists g ∈ A(C) with g ◦ p1 ◦ g−1 = p2, where A(C) is the group of all affine transformations.

The space, Poly4(C)/∼, of holomorphic conjugacy classes 〈p〉 of quartic polynomials is denoted
by M4(C).

For each p(z) ∈ Poly4(C), let z1, · · · , z4, z5 = ∞ be the fixed points of p, and µ1, · · · , µ4, µ5 =

0 the multipliers of zi (i.e. µi = p′(zi)). Let σ1, σ2, · · · , σ5 be the elementary symmetric functions
of these multipliers

σ1 = µ1 + µ2 + µ3 + µ4,

σ2 = µ1µ2 + µ1µ3 + µ1µ4 + µ2µ3 + µ2µ4 + µ3µ4,

σ3 = µ1µ2µ3 + µ1µ2µ4 + µ1µ3µ4 + µ2µ3µ4,

σ4 = µ1µ2µ3µ4,

σ5 = 0.

These multipliers are invariant under the action of (conjugation) A(C).
The holomorphic index of a rational function f at a fixed point ζ ∈ C is defined to be the

complex number

ι( f , ζ) =
1

2πi

∮
dz

z − f (z)
,

where we integrate in a small loop in the positive direction around ζ.
The following results are well known as “Fatou’s index theorem”:

• If ζ is a fixed point of multiplier µ , 1, then ι( f , ζ) = 1
1−µ .

• For any polynomial p which is not the identity map,∑
ζ∈C
ι(p, ζ) = 0, (1)

where this summation is over all fixed points of p.
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By an automorphism of a polynomial map p we will mean an affine transformation g that
commutes with p. The collection Aut(p) of all automorphisms of p forms a finite group. The
symmetry locus of the polynomials of degree n is defined to be the set Sn (⊂ Mn) consisting of all
conjugacy classes 〈p〉 of polynomial maps admitting non-trivial automorphisms.

A polynomial-like map of degree d is a triple (U, V, f ) where U and V are topological disks,
with V relatively compact in U, and f : V → U is analytic, proper of degree d.

An orientation-preserving homeomorphism f of a domain D onto another, D′, is called a qua-
siconformal map if f is ACL on every rectangle

R =
{
z = x + iy | a 5 x 5 b, c 5 y 5 d

}
,

i.e.,

• f (x + iy) is absolutely continuous on [a, b] with respect to x for almost every fixed y,

• f (x + iy) is absolutely continuous on [c, d] with respect to y for almost every fixed x, and

• there is a constant k < 1 such that | fz̄| 5 k| fz| almost everywhere on D.

The filled-in Julia set K f of a polynomial-like map (U, V, f ) is defined by

K f =
⋂
n=0

f −n(V).

Polynomial-like maps (U, V, f ) and (Ũ, Ṽ , f̃ ) are hybrid equivalent f ∼hb f̃ , if there exists a
quasi-conformal map h from a neighborhood of K f to a neighborhood of K f̃ , such that h◦ f = f̃ ◦h
near K f and ∂̄h = 0 almost everywhere on K f .

From Straightening Theorem in [1], every polynomial-like map (U, V, f ) of degree d is hybrid
equivalent to a polynomial P of degree d. If K f is connected then P is unique up to conjugation by
an affine map.

3 The projection from M4(C) to C3

Let σ1, · · · , σ4 be the elementary symmetric functions of the multipliers of p(z) ∈ Poly4(C). The
following relation holds by Fatou’s index theorem.

Lemma 1 (Theorem 1 in [2])
Among σi

′s, there is a linear relation

4 − 3σ1 + 2σ2 − σ3 = 0.

For a monic and centered quartic polynomial z4 + c2z2 + c1z + c0, the three values σ1, σ2, σ4
are determined by Transformation formula:

σ1 = −8c1 + 12,
σ2 = 4c3

2 − 16c0c2 + 18c2
1 − 60c1 + 48,

σ4 = 16c0c4
2 + (−4c2

1 + 8c1)c3
2 − 128c2

0c2
2 + (144c0c2

1 − 288c0c1 + 128c0)c2

−27c4
1 + 108c3

1 − 144c2
1 + 64c1 + 256c3

0.
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Risa/Asir commands for getting Transformation formula:
P=z^4+c2*z^2+c1*z+c0;
Fix1=z0+z1+z2+z3;
Fix2=z0*(z1+z2+z3)+z1*(z2+z3)+z2*z3-c2;
Fix3=z0*z1*z2+z0*z1*z3+z0*z2*z3+z1*z2*z3+c1-1;
Fix4=z0*z1*z2*z3-c0;
DP=diff(P,z);
M0=subst(DP,z,z0)-m0;
M1=subst(DP,z,z1)-m1;
M2=subst(DP,z,z2)-m2;
M3=subst(DP,z,z3)-m3;
S1=m0+m1+m2+m3-s1 ;
S2=m0*(m1+m2+m3)+m1*(m2+m3)+m2*m3-s2;
S4=m0*m1*m2*m3-s4;
load("gr");
G=gr([Fix1,Fix2,Fix3,Fix4,M0,M1,M2,M3,S1,S2,S4],

[m0,m1,m2,m3, z0,z1,z2,z3, s4,s2,s1, c2,c1,c0],
[[0,4],[0,4],[0,3],[0,3]]);

There is a natural projection

Ψ4 : M4(C) −−→ Σ(4)

∈ ∈

〈p〉 |−−→ (σ1, σ2, σ4),

where Σ(4) is the image of M4(C) under Ψ4. The complement C3 \ Σ(4) is denoted by E(4), and
called the exceptional set.

Under the conjugacy of the action of A(C), it can be assumed that any quartic polynomial is
“monic” and “centered”:

p(z) = z4 + c2z2 + c1z + c0.

There are three monic and centered polynomials in any conjugacy class 〈p〉 except for 〈z4 + z〉, and
they are transformed each other under the action of G3 = {1, ω, ω2}, where ω is third roots of
unity.

After following procedures 1 – 4, we obtain a parametrized algebraic variety. This variety
indicates essential property of the projection Ψ4.

1. for a point 〈p〉 ∈ M4(C), choose a monic and centered representative z4 + c2z2 + c1z + c0,

2. getting rid of the affine ambiguity on “Transformation formula”, set c := c3
2 (if c2 = 0, set

c̃ := c3
0), and

3. rebuild Transformation formula of σ1, σ2, σ4, c, c0, c1 variables,

4. remove two variables c0, c1, from the above formula.
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Definition 2
We define an algebraic variety in C3 with a parameter c ∈ C,

G(c) : 262144(σ1 − 4)2c2 + 1024(27σ4
1 + (−144σ2 − 576)σ2

1 + (384σ2 + 1280)σ1 + 128σ2
2

−256σ2 − 512σ4 − 768)c + (9σ2
1 + 24σ1 − 32σ2 − 48)3 = 0.

Risa/Asir commands for getting G(c) :
Sgm1=-8*c1+12-s1;
Sgm2=4*c2^3-16*c0*c2+18*c1^2-60*c1+48-s2;
Sgm4=16*c0*c2^4+(-4*c1^2+8*c1)*c2^3-128*c0^2*c2^2+(144*c0*c1^2

-288*c0*c1+128*c0)*c2-27*c1^4+108*c1^3-144*c1^2+64*c1
+256*c0^3-s4;

CC=c2^3-c;
load("gr");
G1=gr([Sgm1,Sgm2,Sgm4,CC],

[c0,c1,c2, c, s1,s2,s4],[[0,3],[0,1],[0,3]]);

The number of conjugacy classes corresponding to a point (σ1, σ2, σ4) ∈ C3 is equal to the number
of allowable parameter values c on G(c). Namely, we have the following theorem by counting the
number of solution c of the defining equation of G(c).

Theorem 3
For (σ1, σ2, σ4) ∈ C3, number of the elements of set Ψ−1

4 (σ1, σ2, σ4) are∞, 0, 1 or 2:

Case 1 #Ψ−1
4 (σ1, σ2, σ4) = ∞ if and only if (σ1, σ2, σ4) = (4, 6, 1). And further, we can

precisely formulate,

Ψ−1
4 (4, 6, 1) =

{
pa(z) = (z2 − a)2 + z

}
a∈C

(note pa ∼ p±ωa).

Case 2 #Ψ−1
4 (σ1, σ2, σ4) = 0 if and only if the point (σ1, σ2, σ4) cannot belong to G(c) for any

c. And further, we can give defining equation of the exceptional set E(4),

(σ1, σ2, σ4) =
(
4, s,

(s − 4)2

4

)
, s , 6. (2)

Case 3 #Ψ−1
4 (σ1, σ2, σ4) = 1 if and only if discriminant of the defining equation of G(c) vanishes

or σ1 = 4.

Case 4 #Ψ−1
4 (σ1, σ2, σ4) = 2, for the remains of the above.

Theorem 3 leads immediately to the following two corollaries which are justified for structural
and topological reasons.

Corollary 4
The exceptional set E(4) is contained in the plane {(4, σ2, σ4)} � C2.
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Corollary 5
None of quartic polynomial has the fixed points of the multipliers µ, µ, 2 − µ, 2 − µ, (µ , 1).

Corollary 5 is clear from (2) and the relation between roots and coefficients.

Risa/Asir commands for getting the multipliers:
S1=m0+m1+m2+m3-4 ;
S2=m0*(m1+m2+m3)+m1*(m2+m3)+m2*m3-s;
S4=m0*m1*m2*m3-(s-4)^2/4;
Index=nm(1/(1-m0)+1/(1-m1)+1/(1-m2)+1/(1-m3));
load("gr");
G2=gr([S1,S2,S4,Index],[s,m3,m2,m1,m0],2);

Remark 6
The discriminant of the defining equation of G(c) is given as follows:

Discr = 1073741824(54σ5
1 + (−81σ2 − 27σ4 − 135)σ4

1 + (36σ2
2 − 144σ2 − 1008)σ3

1

+(−4σ3
2 + 360σ2

2 + (144σ4 + 2976)σ2 + 576σ4 + 4192)σ2
1

+(−160σ3
2 − 2176σ2

2 + (−384σ4 − 6400)σ2 − 1280σ4 − 5376)σ1 + 16σ4
2 + 448σ3

2

+(−128σ4 + 2176)σ2
2 + (256σ4 + 3840)σ2 + 256σ2

4 + 768σ4 + 2304).

Therefore Discr = 0 is a surface in C3.

Theorem 7
The symmetry locus can be formulated as follows:

σ1 = s,

σ2 = 3(3s − 4)(s + 4)/32,
σ4 = −(3s − 4)3(s − 12)/4096.

(s ∈ C). (3)

Proof The symmetry locus is the singular part of the surface defined by Discr = 0 (see [2]).

Discr = Discrs1 = Discrs2 = Discrs4 = 0, σ1 , 4.

Solving these equations we have (3).

Remark 8
The point (4, 6, 1) is the unique intersection point of the symmetry locus and the plane σ1 = 4.

4 Loci Per1(µ) on the space {(4, s2, s4)}
In this section, we consider dynamical behavior on the real section R2 � {(4, s2, s4)}.

The locus Per1(µ) be the set of all conjugacy classes 〈p〉 of maps p having a fixed point of
multiplier µ.
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Proposition 9
For each µ ∈ C, Per1(µ) is a straight line with the following defining equation:

Per1(µ) : σ4 − (2µ − µ2)σ2 + µ
4 − 4µ3 + 8µ = 0.

Proof The multipliers at the fixed points are the roots of the equation,

µ4 − σ1µ
3 + σ2µ

2 − σ3µ + σ4 = 0.

From the linear relation of Lemma 1, we have the defining equation of Per1(µ).

We remark that the multipliers of a quartic polynomial on the real plane {(4, σ2, σ4)} are ’four
real values’, ’two real and a pair of complex conjugates’, or ’two pair of complex conjugates’.

4.1 Per1(µ) (µ ∈ R)

At first we consider µ ∈ R. In this case we can illustrate the figure of Per1(µ). (See Figure 1.) The
following results are easily verified.

Proposition 10
For 〈p〉 ∈ {(4, σ2, σ4)} ∩ Σ(4), the corresponding multipliers of p are µ, 2 − µ, λ, 2 − λ.
Proof It is clear from the relation between roots and coefficients.

Risa/Asir commands for getting the multipliers:
S1=m0+m1+m2+m3-4 ;
S2=m0*(m1+m2+m3)+m1*(m2+m3)+m2*m3-s2;
S4=m0*m1*m2*m3-s4;
Index=nm(1/(1-m0)+1/(1-m1)+1/(1-m2)+1/(1-m3));
load("gr");
G3=gr([S1,S2,S4,Index],[s2,s4,m3,m2,m1,m0],2);

Figure 1:

The left figure shows Per1(µ) (−10 < µ < 1):
−20 < s2, s4 < 20,
Gray lines mean Per1(µ) (|µ| = 1) and
black lines mean Per1(µ) (|µ| < 1).

Corollary 11
• If p has a attracting fixed point then p has a

repelling fixed point with positive multiplier.

• If p has a repelling fixed point with negative
multiplier then p has a repelling fixed point
with positive multiplier.
Namely, each line of Figure 1 is overlapped

by a line Per1(µ) for some µ > 1, and p cannot
have three attracting fixed points.
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4.2 Per1(µ) and Per1(µ̄)

Next, we consider the multipliers of a quartic polynomial are ’two real and a pair of complex
conjugates’. In this case, the multipliers are 1± iβ, λ, and 2−λ from Proposition 10. Then we have
the following from Proposition 9.

Proposition 12
For each β ∈ R, Per1(1 ± iβ) is a straight line with the following defining equation:

Per1(1 ± iβ) : σ4 = (1 + β2)σ2 − (1 + β2)(5 + β2).

Proof Removing λ from two equations σ2 = 5+ β2 + λ(2− λ) and σ4 = (1+ β2)λ(2− λ), we have
the above defining equation of Per1(1 ± iβ).

Note that these loci are corresponds to repelling fixed points.
Now, we consider the last case: multipliers of a quartic polynomial are ’two pair of complex

conjugates’. In this case, the multipliers are a ± ib and 2 − a ± ib from Proposition 10. Because
defining equation of Per1(µ) can express a line on the real plane no longer, we need a new device
P̃er1(µ̃) for illustrating figures of Per1(µ). (See Figure 2.)

The locus P̃er1(µ̃) be the set of all conjugacy classes 〈p〉 of maps p having a fixed point of
multiplier µ with µ̃ = µµ̄.

Figure 2:

The left figure shows Per1(1 ± iβ) and P̃er1(µ̃).
−20 < s2, s4 < 20,
Dark gray lines mean Per1(1 ± iβ),
gray curves mean P̃er1(µ̃), t = 1 and
black curves mean P̃er1(µ̃), t < 1.

Proposition 13
In the case that the multipliers are a± ib and 2−a± ib,
we have a defining equation of P̃er1(µ̃).

P̃er1(µ̃) :

σ2
4 − 2(µ̃2 + 2µ̃)σ4 + µ̃

4 − 4µ̃3 + (σ2 − 16)µ̃2 = 0,

where µ̃ = a2 + b2.

Proof In this case the multipliers are a± ib and 2−a± ib. By setting µ̃ = a2+b2 for two equations
σ2 = −2a2 + 4a + 4 + 2b2 and σ4 = (a2 + b2)((2 − a)2 + b2), we have

σ2 = −4a2 + 4a + 4 + 2µ̃, σ4 = µ̃(µ̃ − 4a + 4). (4)

Removing a from the above two equations, we have a defining equation of P̃er1(µ̃).

Remark 14
If 0 5 t < 1, P̃er1(µ̃) corresponds to polynomials having two attracting fixed points of multiplier
a+ ib and a− ib. As a, b ∈ R, the discriminant 4+4(4+2µ̃−σ2) of the left of (4) must be positive.
Therefore, on a region {(4, σ2, σ4) |σ2 < − 1

4 (σ2
4 − 6σ4 − 19), σ4 <

(2−σ2)2

4 }, corresponding
polynomial p have two attracting fixed points of multipliers a ± ib.
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5 Dynamics on the exceptional set
The lines {Per1(µ)} have a close relation with the exceptional set. As an example, we give the
following results directly obtained by the results in the section 4.1 and 4.2.

Figure 3:

The left figure shows the real section of the exceptional set

E(4) :
(
4, s,

(s − 4)2

4

)
, (s , 6).

• On the plane {(4, s2, s4)} � R2, the envelopes of the lines
{Per1(µ)}µ∈R and of {Per1(1 ± iβ)}β∈R coincides with the excep-
tional set. (See Figure 1, 2 and 3.)

• On the region
{

(4, σ2, σ4) | σ4 <
(2−σ2)2

4

}
that bounded by the

exceptional set, corresponding quartic polynomial has the fixed
points of the multiplier with two pair of complex conjugates.

Conjecture 15
On the exceptional set, a quartic polynomial degenerates into
“twins” of quadratic polynomials conjugate to z2 + c for some c.

Theorem 16
There is a component D ⊂ Σ(4) such that two polynomial-like maps (U, V, p) ∼hb z2 + c and
(Ũ, Ṽ , p) ∼hb z2 + c̄ are constructed for any 〈p〉 ∈ D, and c and c̄ converge to a common value
c̃ ∈ R as 〈p〉 → E(4). The limit value c̃ depends only on the landing point (4, s, (s−4)2

4 ) ∈ E(4) and
is written by c̃ = s−4

8 .
Proof On a region {(4, σ2, σ4) |σ2 < − 1

4 (σ2
4 − 6σ4 − 19), σ4 <

(2−σ2)2

4 }, any corresponding
polynomial p(z) has two attracting fixed points of multiplier µ, µ. Dynamics of p(z) are symmetry
for the real axis. (See Figure 4.) Therefore we can choose suitable topological disk U, Ũ bounded
by equipotential curves such that (U, V, p) and (Ũ, Ṽ , p) (U ∩ Ũ = ∅) are quadratic-like maps
hybrid equivalent to z2 + c and z2 + c respectively.

Then, if 〈p〉 converges to a point (4, s, (s−4)2

4 ) ∈ E(4), two parameters c and c are converges to
common value s−4

8 ∈ R. (See Figure 6 and 7. Figure 8–11 show another example.)

V U

~
V
~

U

Figure 4: (4, −1.7696160, 8.8480801), Julia
set of p(z) = z4 +3.8199z2 + z+3.775218, −2 <
<z, =z < 2

Figure 5: Julia set of p(z) = z4 + 3.8199z2 +

z + 3.775218, −0.2 < <z < 0.28, 1.137 < =z <
1.617
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Figure 6: Julia set of quadratic - like map
−0.2 < <z < 0.28, 1.137 < =z < 1.617

Figure 7: Julia set of pc(z) = z2 + (−0.726 +
0.183i), −2 < <z, =z < 2.

Figure 8: (4, 3, 7), Julia set of p(z) = z4 +

0.62996z2 + z + 0.39685, −2 < <z, =z < 2
Figure 9: Julia set of p(z) = z4 + 0.62996z2 +

z + 0.39685, −0.5 < <z < 0.8, 0 < =z < 1.3

Figure 10: Julia set of quadratic-like map
−0.5 < <z < 0.8, 0 < =z < 1.3

Figure 11: Julia set of pc(z) = z2 + (−0.125 +
0.65i), −2 < <z, =z < 2.
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6 Dynamics on the point (4, 6, 1) ∈ Σ(4)

One parameter family
{
pa(z) = (z2 − a)2 + a

}
a∈C

(pa ∼ p±ωa) corresponds to the point (4, 6, 1).
There are maps p in this family such that p have two disjoint quadratic-like restriction, hybrid
equivalent to common quadratic map z2 + 1

4 . (See Figure 12 and 13.)

Figure 12: Julia set of p(z) = z4 − 2z2 + z + 1,
−2 < <z, =z < 2. (4, 6, 1) ∈ Σ(4)

Figure 13: Julia set of p(z) = z4 + 2z2 + z + 1,
−2 < <z, =z < 2. (4, 6, 1) ∈ Σ(4)

Figure 14: Julia set of p(z) = z4 − z2 + z+0.25,
−2 < <z, =z < 2. (4, 6, 1) ∈ Σ(4)

Figure 15: Julia set of p(z) = z4 + z, −2 <
<z, =z < 2. (4, 6, 1) ∈ Σ(4)

On the other hand, in Figure 14, the largest Fatou components contains two critical points.
Therefore in this case p cannot have two disjoint quadratic-like restriction. The quartic polynomial
in Figure 15 has unique parabolic fixed point at the origin.

Conjecture 17
None of quartic polynomial p have two disjoint quadratic-like restrictions of p such that both
quadratic-like map are hybrid equivalent to a common quadratic polynomial z2 + c, c ∈ M \ { 14 },
where M is Mandelbrot set.

This conjecture gives a reason why the exceptional set is not empty.
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