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An Application of Grobner Bases for the Moduli of
Hypersurface Simple K3 Singularities
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Abstract

For many classes of singularities there exist normal forms. We know the weights of hypersurface
simple K3 singularities by nondegenerate polynomials and obtained examples. In this paper, we try
to decide the non-degeneracy conditions of unimodular, bimodular and trimodular type simple K3
singularities. We show that they are obtained by using Grobner bases.

1 Introduction

Let f1, f>, ..., f be holomorphic functions defined in an open set U of the complex space C". Let X
be the analytic set fl’l(O) N...N f710). Letx € X,andletg, g, ..., gs be asystem of generators
of ideal /(X),, of the holomorphic functions which vanish identically on a neighborhood of x( in
X. xp is called a simple point of X if the matrix (dg;/0x;) attains its maximal rank. Otherwise, xg is
called a singlar point(singularity) of X. (For r = 1, xy is called a hypersurface singularity of X.)

Let V be an analytic set in C". A singular point x( of V is said to be isolated if, for some open
neighborhood W of xp in C", W N V — {xy} is a smooth submanifold of W — {x,}.

Let (X, x) be a germ of normal isolated singularity of dimension n. Suppose that X is a Stein
space. Let 7 : (M,E) — (X, x) be aresolution of singularity. Thenfor1 < i < n-1,
dim(R'm,9y)x is finite. Rz, 94, has support on x. They are independent of the resolution.

In fact A .
dim(R'm,9y)x = dimHY' (X, 9y) (1 < i < n-2)
and
dimI'(X — {x},9K)
LX(X —{x})
where L2(X — {x}) is the subspace of I'(X — {x}, 9K) consisting of n-form on X — {x} which are

square integrable near x.
We denote them by

dim(R" 'z, 9)x =

WX, x):= dim(Rm,9y)x (1 <i < n-2)
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and '
P,(X, x) : = dim(R'm, Oy)x.

The invariant P,(X, x) is called the geometric genus of (X, x).

In the theory of two-dimensional singularities, simple elliptic singularities and cusp singulari-
ties are regarded as the next most reasonable class of singularities after rational singularities. Cusp
singularities appear on the Satake compactifications of Hilbert modular surfaces and have loops of
rational curves as the exceptional sets of the minimal resolution. Simple elliptic singularities were
investigated by Saito([3]]) in detail. By definition, each of them has a nonsingular elliptic curve as
the exceptional set of the minimal resolution. Here we are interested especially in a hypersurface
simple elliptic singularity (X, x). In this case, the defining equation of (X, x) is given by one of the
following in some coordinates z;, z2, z3 around x,

Es z%+zg+z§+/11Z11213 =0 (E*=-3)
E; :© f+a+d+buns =0 (B2 = -2)
Es © Z+n+5+buns =0 (B2 =-1)

with the parameter satisfying 43 +27 # 0, 43— 64 # 0, 15 -432 # 0 and corresponding to the
moduli of the elliptic curve E which appears as the exceptional set.

What are natural generalizations in three-dimensional case of those singularities? They are
purely elliptic singularities. And we regard simple K3 singularities as natural generalizations of
simple elliptic singularities in three-dimensional case. We define the simple K3 singularities.

2 Simple K3 singularities

The notion of a simple K3 singularity was defined by Ishii and Watanabe [4] as a three-dimensional
Gorenstein purely elliptic singularity of (0, 2)-type, whereas a simple elliptic singularity is two-
dimensional purely elliptic singularity of (0, 1)-type.

Definition 1 ([6])
Let (X, x) be a normal isolated singularity. For any positive integer m,

dim T (X — {x}, ¥(mK))

om(X, x) = L2/m(X — {x})

b}

where K is the canonical line bundle on X — {x}, and L>™(X — {x}) is the set of all L/ "-integrable
(at x) holomorphic m-tuple n-forms on X — {x}.

Then §,, is finite and does not depend on the choice of a Stein neighborhood on X.

Definition 2 ([6])
A singularity (X, x) is said to be purely elliptic if 6,, = 1 for every positive integer m.

When X is a two-dimensional analytic space, purely elliptic singularities are quasi-Gorenstein
singularities, i.e., there exists a non-vanishing holomorphic 2-form on X — {x}.

Definition 3 ([4])
A three-dimensional singularity (X, x) is a simple K3 singularity if the following two equivalent
conditions are satisfied:
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(1) (X, x) is Gorenstein purely elliptic of (0, 2)-type.

(2) (X, x)is quasi-Gorenstein and the exceptional divisor E is a normal K3 surface for any minimal
resolution 7 : (X, E) — (X, x).

Simple elliptic singularities and cusp singularities are characterized as two-dimensional purely
elliptic singularities of (0, 1)-type and of (0, 0)-type, respectively. The notion of a simple K3 singu-
larity is defined as a three-dimensional isolated Gorenstein purely elliptic singularity of (0, 2)-type.

Let f € C[zg, z1, 2, z3] be a polynomial which is nondegenerate with respect to its Newton
boundary I'(f) in the sense of [5], and whose zero locus X = {f = 0} in C* has an isolated
singularity at the origin 0 € C*Then the condition for (X, 0) to be a simple K3 singularity is
given by a property of the Newton boundary I'(f) of f.

Next we consider the case where (X, x) is a hypersurface singularity defined by a nondegenerate
polynomial f = Z a,? € Clzp, 1, ..., za],and x = 0 € C™L. We denote by Ry the set of all
nonnegative real numbers. Recall that the Newton boundary I'(f) of f is the union of the compact
faces of I',(f), where I".(f) is the convex hull of |, (v + Rj*!) in R™*1,

For any face A of [',(f), set fa : = Z a,z’. We say f to be nondegenerate, if

veA
Oy _0f _ _ Oh _
020 07y 0z,

has no solution in (C*)**! for any face A.
When f is nondegenerate, the condition for (X, x) to be a purely elliptic singularity is given as
follows:

Theorem 4 ([7])
Let f be a nondegenerate polynomial and suppose X = {f = 0} has an isolated singularity at
x=0eCvL

(1) (X, x)is purely elliptic if and only if (1, 1, ..., 1) € T'(f).
(2) Letn = 3 and let A be the face of I'(f) containing (1, 1, 1, 1) in the relative interior of Ay.
Then (X, x) is a simple K3 singularity if and only if dimgAy = 3.

Thus if f is nondegenerate and defines a simple K3 singularity, then f,, is a quasi-homogeneous
polynomial with a uniquely determined weights « , which called the weights of f and denoted a(f).
We denote by Q. the set of all positive rational numbers. Then @ = (@, a2, @3, a4) € Qi and

4 4
deg,(v) : = Zam = 1 forany v € Ay. In particular, Zai = I,since (1, 1, 1, 1) is always
i=1 i=1
contained in Ay.

We denote by Z the set of all nonnegative integer numbers.
Let W := {a = (a1, a2, @3, ag) € Q% |a; +ay+ a3 +ay = 1} and for an element @ of
W’, set
T(@) :={veZylav=1)

and
<T(a)>:= {Z t,-v € R*[t, € Ryl

vel (@)

Then the set < T'(a) > is a closed cone in R* spanned by T(a).
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LetWy :={a e W |, 1,1,1) € Int<T(a) >, a > a, > a3z > a4}. Then Wy is the
set of weights of simple K3 singularities. Wy is classified, there are ninety five classes in terms of
the weights of f([8]).

3 Defining equations with parameter coefficients

Yonemura listed the weights of hypersurface simple K3 singularities by nondegenerate polynomials
and obtained the examples such that the polynomial f is quasi-homogeneous and that {f = 0} C
C* has a simple K3 singularity at the origin([8]). The minimum number of parameters in the
polynomial is less than or equal to 19 and is associated with the moduli of the K3 surface with
singularities.

Let Wy be the set of defining equations which has a nondegenerate hypersurface simple K3 sin-
gularity at the origin and let #m(f) be the minimum number of parameters of the defining equation
for any f € W,. Yonemura showed that there exists 3 types, 8 types, 7 types, respectively for
#m(f) = i (1 < i < 3)in given [§].

Yonemura’s results are as follows:

For #m(f) =1,
No. | The example of defining equations
fs2 2 +yt+xd + ot
Js6 y+yz+2 +wb
I3 X +y +y2 +ond
For #m(f) = 2,
No. | The example of defining equations
F0 P+y +2w+wnd
fis 24y w2
fo1 Kyt + 2w+ w
Jos xzz+y3 + 20w + w!
f0 2 +y3z+Bw+wl!
faa 2+ xB + Y+ ywt + 2w
fse 2y + ot w42+’
for X+ v+ v+ yw® + 2wt
For #m(f) =3,
No. | The example of defining equations
fs7 2y + v+ x2 + Aw o+ ud
Joa z+ x> + 3w+ 20+ ub
feos Pz+y +y2 + 2w+ wll
Jfa 2+ ytw + 2 + 2w+ ud
fa3 K+ +yw? + 2% + 2wl
foo X +yrz 49w + 2w+ zw’
fon X+ 24+ + 7w+ w!!
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The index number n of f, denotes the number of the defining equation in the classification by
Yonemura.

However, defining equations are not unique. So, we try to rewrite for the quasi-homogeneous
polynomials.

Rewriting method We can take the following form for a weighted quasi-homogeneous polyno-

mial f in C™*! with the coordinate [xo, x1, X2, ..., X,]:

f=fH+ .+ fn
where f; (2 < i < m) is a homogeneous polynomial of degree i in C**1. And let W =
(g, a1, a3, ..., @,) be the weights. Then we can take the following form for the homogeneous

polynomial of each degree d:

ko k .
Giohy . kX Xy o X (ki € No, 0 < i < n).
ko+ki+ ... +k,=d

(We denote by Ny the set of all positive natural numbers.)
Let < be the lexical linear ordering of the terms of the homogeneous polynomials for 0 < i <
m in turn from the minimal term to the maximal term given below:

Definition 5
Let K = (ko, ki, ..., ky) (ki € No, 0 < i < n) and let agXX denote the term
a](XK = Aok, ... knxf)ox]f‘ an”.
Then axgX® < b X" if there exists an integer s (0 < s < n) such thatk; = I form =

0,1, ..., s—land k, < I,

In the following steps, for the sake of simplicity, we shall sometimes omit the coefficients in
indicating terms. We will consider the following procedure by using this ordering.

Step 1 We keep the weights ag > @) > a2 > .. > @, and try to eliminate a term XX by a
suitable analytic transformation (or linear transformation) with respect to X. We find a condition
of the coefficient of term XX where we can eliminate the term X% without generating the term
XK <« XK. We classify the following two cases:

Case 1 : We can eliminate the term X% without generating the term X%/ <« X%,

Case 2 : Otherwise for case 1.

For the condition of case 1, we eliminate the term X without generating the term X%/ <« X%,
For the condition of case 2, we go to next step.

Step2 We consider the next order term of the defining equation. And we do a same manipulation
as step 1 for the next order term of the defining equation. By the magnification of the coordinate,
we turn a coefficient of a necessary term into 1 for isolation condition in early order of this process.
And moreover we simplify coefficient of all terms in this process.

For each variable x;, one term of type x}' or x?’lx ; (i # J)is necessary so that the singularity
defined by the equation is isolated. We go to step 3 if we executed this manipulation for all terms.
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Step 3 We simplify the coefficients of all terms finally.

Example 6
For the defining equation of E; singularity, we eliminate the term xyz by using analytic transfor-
mation

2

And we put 4, = 24; (simplify coefficient).
Then the defining equation is as follows:

X2yt - P+
For the simplicity of coefficient, we put —/1’22 := A7 (simplify coeflicient, finally).
Finally, the result of rewriting is as follows:

X2yt AR

For the defining equation of Eg singularity, we eliminate the term xyz by using analytic transfor-

mation
,_ Ayz

2
Next we eliminate the term y?z? by using analytic transformation

X =X

. A7
y=Yr o
Then the defining equation is as follows:
4 A
72 ’3 3.7 4 3 \.6
+y7 - = +(1-==)z.
AT gyt U geg”
For the simplicity of coefficient, we put A3 : = 245 (simplify coefficient). Then the defining
equation is as follows:
U 4 ’6
72 ’3 3 7.4 3 6
+y7 - —= +(1- .
X +y R ( 77 )z

For the simplicity of coefficient, we put —/1’32 := Ay (simplify coefficient, finally).
Finally, the result of rewriting is as follows:

72 73
72 /3 3 ’_4 3 6
+y - —=y7+(1- .
Xty 7Yz ( 77 )z

For the defining equation of Eg singularity, we eliminate the term x> by using linear transformation
z=2z —x
Next we eliminate the term xzy, xyZ, x7’? by using linear transformation
pl 1 A
x=x+ gly’ t 5y =yl = ?'y’.

Then the defining equation is as follows:

4 4 ! 1
3 12 1 1 T1N,3 T2 o _] rr2 - //3.
xz+(+27)y +4yz+2yz +4
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For the magnification of the coordinate (we turn a coefficient of a necessary term into 1 for isolation

/7

condition), we put x” = . Then the defining equation is as follows:
3

A3 A2 A 1

12 _rr 1\./3 1.2 _nm 1 s 2 7”3

+(1 + — + — + — + - .
Xz 27 » 4 yr 2 ye 4Z

For the magnification of the coordinate (we turn a coefficient of a necessary term into 1 for isolation

/13
condition), we puty’ = (1 + ﬁ)*%y”, 7= 2%z”', X = 27ix".
Then the defining equation is as follows:

2 1
1112 111 73 /ll 72 23/11 17 1112 3
XY "+ ———)" T+
4 A7\2 A\
23(1+ﬁ)3 (1+ﬁ)3
/12
we eliminate the term y”’2z””” by using linear transformation y” = y"” — —————7""
4 B2
3251+ )3

Then the defining equation is as follows:
3/11 (216 B /l?) 1 _r112
+ 54—z
2527 + )3 2327 + 4>

5832 - 54043 - %, .

2 3
X" Z//r +y"

In general, for the defining equation of E¢ singularity, we can take the following:
X’z = 3y -2y - ).
For this defining equation, we do similar manipulation. Then we obtain the following result.
1 1
Poty = G = A+ D = (=247 =30 =30+ 2,

(We use this equation in later example.)
By using this method, we obtain the following results.

For #m(f) = 1,
No. The defining equations
fi2 | X+ Axyzw + 12+t + ot
fss | ¥y +yz+ 2wt +2 +wb
frn | X2+ + 222w +y2 + wd
For #m(f) = 2,

No. The defining equations

fio | X2+ + 22w+ uyaw’ + 2w+ wh

fis | 2+ + 2wt + 21+ w4+ w2

for | Pz+y+ %ow? + w + uwt +w’

fos | X¥*z+y + 2w + 2Pw + pwb + wl

feo | X2+ z+ 2wt + Bw + pztnb + wll

faa | X+ Axyzw + x23 + Y3z + ywt + uPw?

fio | X2y 4wt + yIw 4+ 2wt + 2+ uzw’

for | X2 +y*z+ 22w + v + ywb + udw?
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For #m(f) = 3,
No. The defining equations
f57 ¥y +axz® +y* + %W + wy?w? + bz*w + wh(a # 0 or b # 0)
f57 X2y + x22 + 9+ PwP 4+ uy?2w? + vztw + wO(for the above a # 0)
fs7 X2y + v + 2w + uy?w? + 2w + wo(for the above a = 0)

for | ¥z +axy® + by’w + y*zw? + uyz?w’ + 2 +vPwt + wla £ 0 or b £ 0)

foa | X724+ x7 + 2w + puy?w? + 28 + v3wt + wl(for the above a + 0)

Joa X224+ w + y?2w + 28 + uw* + wd(for the above a = 0)
fos X2+ Y +y2 + Ay?2wt + udw? + vAwb + wld

fa X+ YW+ 22w 92 + uyawd + vitw? 4w

fs3 22+ + 2wt + yw® + 2% + pwb + v2w!!

foo X+ Y2+ 22w 4+ P wd + 2w + v wt + o’

for 2+ Y32+ 2w+ ayw® + 7w+ u*nw® + baw''(a # 0 or b # 0)

fo2 22+ Y32+ 2wt + yw’ + 7w+ uz*nw® + vaw!l(for the above a # 0)

foo X2+ Y37+ 2wt + 7w + pz*nwb + zw!''(for the above a = 0)

4 Application of Grobner Bases

In the elimination theory, one of basic strategy is Elimination Theorem. We can obtain the non-
degeneracy condition of singularity at the origin from the Grobner basis([l1]]). The following theo-
rem holds.

Theorem 7 ([2])

Letl c k[xi, ..., x,] be an ideal and let G be a Grobner basis of I with respect to lex order where
Xy > xp > ... > x,. Then, forevery 0 < [ < n, the set

Gl = G N k['xl+la o ,xn]

is a Grobner basis of the /th elimination ideal 7;.

R a—f, a—f, s of >. And let G be a Grobner basis of 1
ox; 0xp 0x,

with respect to lex order where x; > x, > ... > x,. Then, forevery 0 < [ < n, the set

Let f be a defining equation, [ : =<

G = G N klxir, ooy X4l

is a Grobner basis of the /th elimination ideal I;.

We can obtain the degeneracy condition of singularity at the origin from the Grobner basis
of the Ith elimination ideal /;. (The degeneracy condition of singularity at the origin means the
singularity is non-isolated singularity at the origin.)

Example 8
For the defining equation of E; singularity, we calculate the non-degeneracy condition.
of of o
Weput f 1= x> + v + 24 + boxyz, 1 :=< f, f —f —f >. And let G be the Grobner basis

ox’ Ay’ 0z
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of I. Then we obtain G = {— (-8 + 3)(8 + 2)2°, (= (-8 + ) (8+ )y, —z(By -
822), 22 (8y* — 43 2%), y(8y* — A27%), 2x + A yz)}. (We use Mathematica)

From this Grobner basis, we get that the non-degeneracy condition of this defining equation is
-64 + A5 # 0.

5 Results

We calculate the non-degeneracy condition of moduli of simple K3 singularities by using the above
theorem for an each defining equation. We obtain the following results. (We use Mathematica)
For #m(f) =1,

No. | The non-degeneracy conditions
fs2 A4 - 256 #0
fs6 A2 +27 #0
fn A2 +27 #0
For #m(f) = 2,
No. The non-degeneracy conditions
S0 3125 + 162% + 5002%u — 824%u? — 225403 + Bt + 27w # 0
fa6 (108 + 4% — 108 + 27u?)(108 + 423 + 108 + 27u*) # 0
fot (2+ D2+ w8+ —4)B+A2-4u)#0
Jos (108 + 423 — 108 + 27u*)(108 + 4% + 108u + 27u?) # 0
S0 (108 + 423 — 108u + 27u*)(108 + 4% + 108u + 27u?) # 0
foa | (16 =% =18+ Bu+27u>) (=16 = 2 + 18Au + Bu + 27> # 0
fee | 3125 — 6425 —20002%u — 128241 — 3600 — 643 u* — 1728u° # 0
for w7+ A3 =36Au — *u+ 822> — 1643) £ 0

For #m(f) = 3, the non-degeneracy conditions are long expressions. Therefore we write them
which is not indicated by table.

fs7(@ # 0) : (=2 + Q2+ )08 — 1082 + 272> — 161> — 144uv + 72uv — 16u>v* — 128v* +
644v3)(108 + 1082 + 2742 — 164> + 144uy + 722uv — 16p>v* + 128V + 640°%) # 0.

fsr(a =0): (2+DQ+D)(-8+41— B +41—p?) # 0.

foa (@ # 0) @ (=512 +5122% — 1282* + 288Au* — 163> + 27u* + 768y — 5122%v + 642% —
14402y — 3842 + 12827 + 64v°)(512 + 5122% + 1282* — 2884 — 1631% + 27u* + 768y +
51222y + 642%y — 14407y + 384v% + 1282%v% + 64v°) # 0.

foa (@ = 0) : (108 + 423 — 108u + 271>)(108 + 4% + 108 + 27u?) # O.

fos 1 3125 + 1600 + 4125220 + 1627 + 8882%u> + 16200413 + 164%3 + 8643 u* + 11664u° —

56251y — 161% — 342003y — 135000y — 25920%13y + 270022v% + 21644 v — S670%v* +
216313 — 5832u*v? — 2163V + 6075w + 729 uv* + 72913V — 729v° # 0.
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fra 1 3125 4+ 162 + 5000%u — 8244 — 22513 + Bt + 2715 — 2003y — 5000y — 1654y —
4302212 + 82443y + 216Auty — By — 278y + 400002 + 16452 + 7043 1v* + 18002 —
8 U2V? — 296213V + A4tV + 3610V — 192243 — 2560y + 64312V + 32433 — 8%y +
768%v* — 1284u>v* + 16u*v* — 1024 # 0.

fez 1 3125 + 162° — 56252u — 16A%u + 27000%u* — 216343 — 729u° + 41252%v + 1647y —
342083 uv + 2162142y + 607513y + 729ty + 888142 — 13500uv? — 56704u>v? + 162004 +
16253 — 259222y + 216317V + 729u*v + 8643v* — 5832u%v* + 11664v° # 0.

9 : M(—2+ V)2 +V - - U+ Ay + M+ A+ 20+ V= uv + 2uv —
(=2 + V2 +v)(64 — A* =96 + P + 30217 + Bpd + 27u* + 8%y — 82° 724>
APy = 36413y — 16v% + 164uv? + 821>V — 16p2v3) # 0.

for (@ # 0) : 3125+ 164° = 5625 — 160 +27002%1% — 216313 — 7291 + 412522 + 1647y —
34203y + 2164%%y + 607513y + 7294uy + 8881%v? — 13500uv> — 56704V + 16200 +
16253 — 259223 + 21631V + 729u*v? + 8643v* — 5832uv* + 11664v° # 0.

for(a = 0) : (108 + 4% — 108u + 27u>)(108 + 443 + 108u + 27u*) # O.
Proof Case: fs;

foi= 2+dlyaw+x +yt+at, T i=< f,

af of of @ P

0_];’ 6_;0, a—?% >. Forw = 0, sincea—f =0,
. af Cof

y:O.Then,Smcea—:0,x=OOrZ:O,Forx:OorZ:()’smcea_:O,x:Oand
X

Z
z = 0. Therefore, for w # 0, we consider the degeneracy condition of moduli.
Let G be the Grobner basis of 7, we setthe order x > y > z > w > A. (We use Mathematica)
Then

={(~4 + )4+ )16+ 22)w0 — (=4 + )4+ 21)(16 + 2)ywz (-4 +
Y(4 + )16 + PHYw B, (=4 + 2)(4+2)(16 + P2)w’, (=4 +2)(4 +
Y16 + 2)w? 28, —w(wd = 27), 2(=252w8 + 2P wd —477), —wl(4awy — 2402 +
*2), W9(64wy+/13zz),w3z(/lwy+4z2),—Wsz(64wy+/l3zz),—wzz3(—192wy+
Pwy + B2), -wd(6dwy + B2), - w(-240Awy + Pwy — 19272 +
A2y, —wr(6dwy + B2, -36wd + 240wy - Pwyz + 2287 -
A, 2(=240w7 + W +4292), Wz (Bw +64y2), y(wd = 77), —w? (12Aw?y? —

G
A
pl

144wy2 + BwyZZ2 + 324, = w(dwy-—A12)@wy +122), wz(48w?y? + Bwy? +
)2 (Awy + 2)(Awy +42%), 14407 + 2282 wy? 22 — °wy? 2 + 1804y —
By, z(=192w8 + 2 w® =42y 3), —z(Bw -20awy? 2 = 16y2°), - 16wy +
B2 =202, =2 (pPPwb —16y*2), y(48w?y* + Bwy2 + 22, —z(Aw’ +
4v3z), =y + w3 wtx — 2wz —4Awyd —-32,4y + Awxz z(12wlx —
APwyz —Ay2), z(w* — x2Z2), wh + Awxy + 3x22, (4w + Axy)z 12wy +

Bwy?2 +36xy222 + 2wt 12xy — 2w?y2 —aw, 382 + Awyz + )

From this Grobner basis, we obtain a necessary condition for the non-degeneracy condition of
moduli in this case. Itis A* — 256 # 0. And moreover we set the other orders x > z > y >
w >4 ..,z >y > x >w > A Then, for their orders,

G; = G N Cw,A] = (A* = 256)w!?

Hence, the non-degeneracy condition of moduli in this case is A* — 256 # 0. The other cases are
similar (see http://trex.h.kobe-u.ac.jp/~takahasi/sk3). 1
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6 Simplification of moduli

In the above section, we got the non-degeneracy conditions of defining equations which define hy-
persurface simple K3 singularities with unimodular, bimodular and trimodular. Same expressions
exist in the non-degeneracy conditions. We need to let the coefficients of defining equations reflect
states. We can realize them by regulating coefficients.

Example 9
For the defining equation of E; singularity, we put

foi= 2+ o+ 2002 + 2

Then we obtain — 1 + /lg = 0 as the degeneracy condition.
For the defining equation of Eg singularity, we put

fi= 2+ = 33y + 223

Then we obtain 1 + 4/13 = 0 as the degeneracy condition.
For the defining equation of Ey singularity, we put

2

- +1

240 =347 -3, +2
3 - 7.

27

f:=x2z+y3—

The coefficients of this defining equation is not simply regulated, because, these coefficients have
important meaning. (1; — 1)2/1% = 0is the degeneracy condition.
We recall moduli of elliptic curve. Then, for x>z = y(y—z)(y—A1z2), the j-invariant is as follows:

A2 =2+ 1)

i = 256
J 2 = 1)

Hence there is not j-invariant if and only if parameters of the defining equation satisfy the degen-
eracy condition.

For results got in the above section, we try to simplify the degenerate conditions by regulating
coefficients (We regulate coefficients of defining expressions in order to simplify non-degeneracy
conditions.).

Then we obtain the results as below: (We use Mathematica)

For #m(f) = 1,

No. The defining equations

fs2 | +4dxyzw + xz2P + y* + vt

fso | X2y + 3z +3y2w? + 25 +w

frz | X2+ +30%2w? + y2° + znwd

No. | The non-degeneracy conditions
fs2 A -1%#0
Jf56 B +1=20
mn 2 +12£0
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For #m(f) = 2,
No. The defining equations
fro | X+ + 5072w + Suyzw’ + 2w+ wh
fis | X+ 3224w + 2+ 2uzfwb + zw!?
for | XPz+yt+ 2202207 + 2w+ 2uPwt + W
fos | P24y +32w* + 2w+ 2uPwb + wil
foo | 2+ z+308wh + Bw + 2uztnb + wll
fra x4+ Ayaw + x2 + V3 + yw* + uPw?
oo | X2y +xwt 3w+ S22 + 2+ Suzw®
for | X2 +y+30°%22w +y20 + yw® + 3udwt
No. The non-degeneracy conditions
o 165 + 2020 — 404° 1% — 458 + 2550 + 270 + 1 2 0
fas DB+ + 1) =420
fe1 W = D —p*-1)#0
Jes B+ +1)2 =42 #0
S0 B =2+ 1) =42 £ 0
Ssa (A = Pu—27p%)* — 4094 - 8)* # 0
fse | 642% + 804%u + 6002% 1> + 7203 + 16003 u* + 1728° — 1 # 0
fo1 1A = 12 — 9% + 242217 — 16 + 1) £ 0
For #m(f) =3,
No. The defining equations
fs7 Xy + x23 + ¥+ 2w + 3uy?w? + 3vztw + wb (a # 0)
fs7 22y + 4202 + 2 V2uy2w? + 2w + wP (a = 0)
fou | X2+ xy? +22y%7w? + 2 \/Zuyzzw3 + 28+ 2v2wt +wd (@ # 0)
foa 7+ w+ 32w + 28 + 2uwt + wd (a=0)
fos X224y + 32 + 5Ay2w* + Suzw? + Sv3wb + w!l
fra ¥+ yw + 5022w + y2 + Suyzwd + Svztw? + wd
fi3 ¥+ + 52w + yw? + 710 + Suzfw® + Sv2w!!
foo | X2+ 2+ 2 V2022w + 2 V2uy* W + Dw + 2vBwt + ow’
foo | X2+ 2+ 5083w+ yw® + 27w + Suz*n® + Svaw!! (a £ 0)
fon X2+ Y324+ 302w + 2w+ 2uz*wd + 2wl (a = 0)

For #m(f) = 3, the non-degeneracy conditions are as below:
fsr(a # 0) : (A2 =11+ 2% =4 + 122uv — 124>V + 32213)? — 4(A + 6uv + 16v°)?) # 0.

fsr@@a=0): (A =-D@-p)?=1) #0.
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foa (@ # 0) 1 (3222 = 168312 + 27u* + 24v + 322% — T2%v + 322207 + 8v3)? — 64(1 + 4% —
9u* + 8% +3v?)? # 0.

foala =0) : (B +p2+1)2—4> # 0.

fos @ 1625 +1652u+20002" u+44402% 1% + 324043 + 1000021 +216000% u* + 116645 452y —
40020y — 34203 uv — 540u%v — 129604%13v + 5400%v* + 54001%uv? — 5670Au>v? + 270000313 v? —
29160u*v? — 10803 + 1215uv? + 36454uv* + 182251V = 729v° + 1 # 0.

Fra 1 160 +20%0 — 4024%4% — 45203 + 2523 u* + 2710 — 4023y — 40uy — 400 uy — 4301212y +
100023y + 10804ty — 6253 1°y — 67518y + 1604v> + 2000452 + 35203 wv? + 360u>v* —
500032V — 740022132 + 31252442 + 450041 — 48004%3 — 2560y + 80003 %V +
160iv? = 50002u*v + 38404%v* — 3200%v* + 2000u*v* — 1024v° +1 # 0.

fis 1645 — 4540 — 40020 + 54022 — 1080313 — 72945 + 16542y + 200027y — 3420 3uy +
5400042y + 121513y + 364541y + 4440042 — 5407 — 56704122 + 3240093 + 100002073 —
129600207 + 2700043123 + 18225443 + 2160053v* — 2916012v* + 11664y + 1 # 0.

foo 1 (O = D(A* + 1220 — 8Pu — 30%u% — 84313 — 27 — 2%y + 16 83y — 1812y + 164417y +
T3y + V2 = 8Auv? = 322212 + 16p> = 1) # 0.

fora # 0) 1 165 —45u—40025u+540212 — 10803 1% 72945 + 16522y +200047y—3420 3 v+
5400042y + 121513y + 36450y + 4440442 — 5402 — 5670442 + 32400° + 1000025y —
12960221073 + 27000313 + 182251 + 216003+ — 29160u2v* + 11664v5 + 1 # 0.
fol@a=0): B +2+ 12442 # 0.
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