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Abstract

This paper gives a brief review of our experimental results of matrix multiplication in a computer alge-
bra system, and explain a characteristic behavior of computing times, with major emphasis laid upon
the relation with complexity obtained by theoretical analysis. Furthermore, based on the knowledge
obtained throughout the experiments, we propose a new method to represent matrices appropriate
for computer algebra systems. So far very little has been studied about how to implement and treat
matrices in computer algebra systems. While the representation of polynomials has been extensively
studied, there is little arguments for matrix representation with empirical study, and two-dimensional
array is used to represent matrices as in numerical matrices. Also, it is very often that even for matrices
with symbolic elements, the same argument and analysis of complexity as for numerical processing
is used, and reveal very weak connection to real computations. This fact motivated us to investigate
the nature of matrix computation, especially in multiplication, and the use of asymptotically fast al-
gorithms. We investigate computational complexity empirically to find a measure to reflect actual
computing time.

1 Introduction

Computing time of an algorithm is usually discussed in connection with a quantity, so-called time
complexity, expressed in terms of the behavior of a function of the number of operations actu-
ally executed. Discussion and analysis performed on numerical processing is often applied to
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algorithms in computer algebra, regradless of its appropriateness. A simple example of this kind
misuse of complexity analysis is on matrices of symbolic elements. Time complexity of matrix
operation is often discussed in terms of the order of treated matrices, but such an analysis is al-
most useless unless all the elements are of equivalent sizes and the costs for operations of elements
are equivalent, which cannot be expected for general matrices treated in computer algebra. Then,
what can be a good measure for computing time in computer algebra? This is our first question.
Another question connected to time complexity is about asymptotically-fast algorithms. As noted
in Knuth’s famous textbook, it has long been believed that asymptotically-fast algorithms never be
fast in practice, however, nowadays, fast algorithms for polynomial arithmetics are indispensable
for some kinds of applications. What about fast algorithms for matrix operations? There have
been developed a series of fast algorithms for matrix multiplications [6} 7, 2]. Are they useful for
symbolic computation?

To obtain an answer for or any knowledge about the above questions empirically, we have been
testing Strassen-Winograd algorithm for matrix multiplication with various types of polynomial
elements in multiple ways of representations [9} 8} [11}[10,[12]. In this paper, as a simple summary
of our experiments, we explain some distinctive results. Our main statement is simple; computing
time is almost proportional to the amount of memory used during computation, namely, the size
of memory space to which processing is done, and thus, has close relation with so-called space
complexity. Also, it turned out that the fast matrix multiplication algorithm may reveals impressive
speed for some cases in symbolic computation, as we have expected. There have been various
research results with matrix determinant or linear systems in the past, e.g. [4]], [3]], [1]. In the
previous work[4], there is an interesting complexity analysis which uses a polynomial model with
expression growth counted into, but its practical usefulness is not clear. For matrix multiplications,
there has been development of new algorithms and macroscopic analysis like O(n?), and there is
few practical results, especially in symbolic and algebraic computation.

Another point focused in this paper is the representation of matrices, especially for sparse
matrices. We wonder if the usual matrix representation using two-dimensional array of successive
memory space is of any significance in the case of computer algebra. Requirement will be efficient
access to an element or to a series of elements in a row or a column and so on. In this paper, we
propose a new matrix representation, which is basically a list of indexed elements, and show its
practical efficiency.

In the sections to follow, we first describe algorithms used in our experiment in Section[2] and
then gives a brief summary of typical results of our experiments in Section [l Section[3]is devoted
to describing the new matrix representation. The final section gives our tentative conclusion.

2 Algorithms To Investigate — Matrix Multiplication

Let A and B be [ x m and m X n matrices, respectively,
ai cee Ay b]] b]n
A=(a; )=+ . | B=(by)=| i
an ... Ay bni ... b
and we consider the multiplication C = AB,
C=(c,»j)=(a,-k )( bkj)zAB.

There are known two types of algorithms for the multiplications; the one is the well-known standard
algorithm using inner-product and the other is the ones with asymptotically fast complexity, which
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employ the reduction of the number of multiplications of matrix elements by transforming their
bilinear forms of the product elements [2].

2.1 Standard Algorithm

The matrix product C = AB is defined and is usually computed by the following formula

c,-j=Za,~kbk_,~, forl<i<land 1 <j<n. (D)
k=1

Namely, each element c;; of the product is the inner product of two vectors of the i-th row of A
and the j-th column of B. So, this standard algorithm is often called with a term “inner product” or
“dot product”.

The above algorithm performs /mn multiplications and /n(m — 1) additions of matrix elements,
at most. Let #, and ¢, denote the costs for multiplication and additive operation of matrix elements,
respectively. Then, the operation count of the algorithm can be described by

Tinn(l,m,n) = (Imn)t, + In(m — 1)t,. 2)
For n x n matrices, the counts are of O(n*), and the complexity of the algorithm is often said to be
O(n®) for matrices of order n.

This analysis will be appropriate to the case when the cost of the arithmetic operations can be
assumed independent of matrix elements and equivalent for all matrix elements. This is the case
with usual numerical processing, however, this simple analysis is almost meaningless in the case
of computer algebra because expressions of matrix elements are usually structured, change their
sizes during computation and therefore the cost varies.

2.2 A Fast Algorithm: Strassen-Winograd Algorithm

In 1969, Strassen invented a new fast algorithm, which requires fewer multiplications of matrix ele-
ments than the above algorithm [[6]. The algorithm partitions each of A and B into four submatrices
of an equal size, and employs divide-and-conquer strategy.

Let )} = [I/2], m; = |m/2] and n; = |[n/2]. We let A and B be partitioned into [; X m;
submatrices A;; and m; X n; submatrices B;;, as follows:

ayiy ... g b]] bl,-z

_ A A _ B B
g et SR _)( 1 A ] and B SR _)[ 11 B )
Ay Ap By By
ary aim bm[ brhfl

where [, /i and 7 denote 21;, 2m; and 2n; respectively. The case when I, m or n is odd requires addi-
tional calculations besides the multiplication of A and B to obtain the true product C, as described
later. Consider the multiplication of A and B.

AB:( A Anp ]( By Bip ]_( A B +AnBy AuBi+AnBxn )
Ay Ax B>y By A By +AnBy A2Bip + AxnB»

While the above expression contains 8 multiplications and 4 additions of submatrices, Strassen
has shown that the expression can be obtained by 7 multiplications and 18 additive operations.
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Strassen’s algorithm was further improved by Winograd[7], by reducing the number of additive
operations to 15, as shown below.

[ An Anp )[ Bi1 B ]_[ A1 B+ ApByy w+v+ (A - 52)Bx

A21 A22 B>y By w+u-+ A22(321 - 1‘2) w+u+v
where
51 = Ay +Ap,
s = s1—An = —Ap +Ay +Ap,
ti = Bp-Bi,
h = Byp-1 = B — Bix + By,
u = (A —Ay)(Bxn - Bp),
v = sih = (Ay +An)(Bi2 — Biy),
w = ApnBy + sn = AuBn + (A + Ay + Ap)(B11 — Bz + Byp).

Basically, for multiplications of submatrices, we apply the algorithm recursively.

If [ or n is odd, the /-th row ¢;;,1 < j < n or the n-th column ¢;,, 1 <7 < [ of the product C is
not included in AB, and must be computed separately via Eq. (I). Furthermore, in the case that m
is odd, a;ub,, ; must be added to the (i, j) element of AB to obtain ¢;;:

c11 ... Clp aim
=AB+| ¢ |(bwi oo bua )
¢ .- Cip arm,
Let’s count the number of elementwise operations precisely. We assume matrices are square
and of order n = m2*, for simplicity. We apply the above fast algorithm recursively until the order

of submatrices become m, and for the multiplication of matrices of order m, we use the standard
algorithm. Now, the operation count can be described by

7 % Tow(m,k — 1)

+15 X (cost of matrix addition/subtraction of order m2~! : m222(k‘1)t+)

= TE X Tipn(m, m,m) + 15m*>(2% = 7% /(2% = )z,

= 7%t + m*(m - Dty) + 5m*(7* = 45, 3)

Tsw(m, k)

If nis a power of 2, i.e., n = 2k and the costs ¢, and t, are regarded as equivalent and constant, the
term 7% = n'°%27 is dominant, and the time complexity Ty (n), as a function of n, is said to be

Tsw(n) = 0(n'°27) ~ O(n*¥7).

In the following sections, we may call Strassen-Winograd algorithm as SW algorithm, fast
algorithm or O(n'°%7)-algorithm, and the standard algorithm as inner-product, classical, or O(n?)
algorithm.

Remark. While in the standard algorithm, all the additions are with the products of matrix ele-
ments, in the fast algorithm, only 7 additions/subtractions of submatrices from 15 are with those
elements, and the rest (8 additions/subtractions) treat submatrices only of A’s or of B’s. The cost 7,
of additive operations of matrix elements varies depending on the expressions of operands, and the
costs of two types of additive operations mentioned above may differ significantly. In the following,
we give an example of detailed analysis appropriate for symbolic computations
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3 A Microsopic Analysis of Computing Cost

The question that initially motivated us to peform empirical study is how efficient the fast algo-
rithms for matrix multiplication can be with symbolic computation in practice. In the series of
our experiments so far, there are some unexpected results with extraordinary speedup. Our current
interest is how and in what cases the algorithm can be fast, and why. In the rest of this section, we
shall give a sample analysis of computing time, using simle matrix model with polynomial entries.

We treat square matrices of order n = m2¥, and we apply SW algorithm recursively to subma-
trices until they get as small as of m X m. For m X m matrices, we use classical algorithm.

3.1 General Case

In matrix product calculations, there are three kinds of element arithmetics; multiplication of g;;
and by, addition/subtraction of the products, and addition/subtraction of a;;’s or of b;;’s. The time
complexity of each kind is denoted as follows:

e t.: complexity of multiplication of a;; and by,
e 1,,: complexity of addition/subtraction of (a;;bi)’s,

e 1.: complexity of addition/subtraction of 4;;’s or of b;;’s.
Then, the total complexity (operation count) of the standard algorithm will be given as
Tinn(n) = n°t, + n*(n— Dt,, .
Now, the complexity for the fast algorithm will be described more precisely than before:

Tow(m k) = TTswlm k—1) + (m2"1) 41,y + dtey + 7t,.,)
m2(7k _ 22k)
3

T*Tjn(m) + (4t + 4t + T1y,)

m2 (7k _ 4k)
3

Tt + m*(m— Dt,,) + (4tq + 4ty + Tty,)

where the complexity ¢, for a;;’s and for b;;’s are designated as ., and ..

3.2 Polynomial Entry Models

We assume that matices are univariate and of dense polynomial elements, and count the number of
arithmetic operations on their coefficients. Let 7, and 7. denote the costs for addition/subtraction
and multiplication of coefficients, respectively. Let the degree of polynomials be d. We consider the
two cases; A and B are univariate in different variables in Section and A and B are univariate
in a single variable in Section[3.2.2]

3.2.1 A and B are univariate in different variables case

Elements ¢;; and b;; are univariate polynomials with (d + 1) terms, and the variables in a;; and b;;
are different.
The complexity of arithmetics is as follows:
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Table 1: Growth and the ratio of the numbers of arithmetics ((i) bivariate case)

— 0k () (D () 1 (D) ) (D
k n=2" cic® b !

3 8 0.840
4 16 8.27 7.48 0.928
5 32 8.13 7.26 1.04
6 64 8.06 7.14 1.17
7 128 8.03 7.08 1.33
8 256 8.02 7.04 1.52

e t, =1t., =ty = (d+ 1)r,: addition/subtraction of (d + 1) terms,

e 1. = (d + 1)*r,: multiplication of two univariate polynomials in different variables with
(d + 1) terms,

o, =(d+ 1)27'+: addition/subtraction of the above products.

TOm) = n’d+ 17t + n’(n-1)d+ 1)1, n=m,
Tom2Y = 7m’d+ 1. + m*m—-1)d + 1)*1,)
2 7k _ 4k
2T =) e+ e, + 2d+ 1P

3
As a reference for actual computing times to be given in the next section, we give some numeric
data. Assuming that 7, and 7. are almost equivalent, we count the total number of arithmetic
operations. Let C](!) and D,(f) denote the respective values Tf,{,)l(2") and T;Q,Qk) with d = 4 (and
m = 1). Table[Ilsummarizes the growth ratio of these values with respect to k and their ratio.

3.2.2 A and B are univariate in a single variable case

All the elements are univariate polynomials in a single variable with (d + 1) terms, and the products
are with (2d + 1) terms.
The complexity of arithmetics is as follows:

e t, =1, =1ty = (d+ 1)r,: addition/subtraction of (d + 1) terms,

o t, = (d+ 1’1, +d*ry: (d+1)? products are gathered into (2d + 1) coefficients in a
univriate polynomial of degree 2d,

e t,, = (2d + 1)7,: addition/subtraction of the above products.

Tm) = nd(d+ 1%t + dPty) + n*(n—1)2d + Dz,

TOm2") = THm((d + 11, + dP1) + mA(m - 1)2d + 1)1s)
. m2(7k _ 4k)

3
In the detailed analysis above, we counted all the mathematical operations, and from the algebraic
point of view, no further precise analysis will be very difficult, except for numerical coefficents.
Our interest will be how well the above analysis matches practical result. As shown in the next

section, the result is negative, and we investigate a good macroscopic measure for computing times
in the next section.

(8(d + D1y + 7Q2d + D1y)
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4 Empirical Study

In general with algebraic computation, it is difficult to estimate the cost of computation in detail
and to perform meaningful complexity analysis, because the structures and the sizes of treated
data, symbolic expressions of formulas, vary during computation. To grasp the behavior of the
computing cost and complexity of the algorithms, we have been doing experiments with various
expressions and investigating qualitative characteristics of computing times [9, |8} [11 [10, [12]. We
have such a prospect that because the cost of multiplication of symbolic expressions is much more
than that of additive operations, the fast matrix multiplication algorithm with less elementwise
multiplications will take much effect. In what follows, we shall show some typical results from
our various experiments that characterize the computational behavior, and explain our pragmatic
view. Note that the examples include the cases with which the fast algorithm reveals (incredibly)
remarkable speedup. We show that some quantity, obtained through our experiments, is closely
related with computing times, and mention that the quantity or its estimate can be used to measure
the computational complexity.

4.1 Implementation in Risa/Asir and Experimental Data

To investigate the algorithms empirically, we use an experimental general-purpose computer alge-
bra system Risa/Asir[5]. In Risa/Asir, as in other computer algebra systems, matrix is represented
by two-dimensional array and the standard algorithm has been the only algorithm implemented
for matrix multiplication. We implemented Strassen-Winograd algorithm in C, and incorporated
it into the original implementation of the standard algorithm so that recursive call terminates to
use the standard algorithm when the size of submatrix gets smaller than some threshold. While
a submatrix of a matrix is represented as a portion of the array of the original matrix, every time
when arithmetic operation is performed, a new matrix of the result is created.

Computing time is measured by using the functions tstart() and tstop() of Risa/Asir. All
the timing data below are taken on FreeBSD 5.2 running on AMD Athlon™ XP 3200+ with
512MB memory.

In this paper, we use two types of square matrices of Table 2l Case I is quite simple that the

Table 2: Experimental data: expression of matrix elements

aij =(+ DG+ D+ 2+ 8 + %2+ x)

Case | . ; s 4. .3 )
=@+ DG+DO+Y +y’ +y +y)

<
|

q Y= XD x4 xUD s
Case = XD 4 (D 4 i

additive operations never change the structure of element expressions, and the costs for multipli-
cations of a;; and by, and for additive operations of their products are equivalent. Therefore, we
can expect that the fast matrix multiplication algorithm reveals much better performance than the
standard algorithm with Case I matrices. Therefore, it is expected that computing time will well
reflect the number of operations given by Eq.’s (2) or (@). On the other hand, with Case II, it is
difficult to tell the overall behavior of computing complexity. In the standard algorithm, the cost
t, for elementwise multiplication is equivalent for all elements, but the cost ¢, for addition in the
inner-product calculation () will increase as k increases. In the case of the fast algorithm, the
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sizes, the number of terms more precisely, of element expressions in the intermediate submatrices
change, and the cost 7, of multiplication is much more than that of inner product case.

4.2 Timings

First, we observe the behavior and the dependence of the computing times with respect to the
matrix size(order) n, and compare two algorithms. Table [3] summarizes actual computing(CPU)
times in seconds. Also, the growth ratio of the computing times and the ratio of the computing
times of the two algorithms are given in Table[d] for the purpose of comparison with our theoretical
analysis. In the case of Case I, the costs for additions and multiplications are almost fixed and
as its result, speedup of the fast algorithm is achieved; Strassen-Winograd algorithm(O(n'°%27)-
algorithm) is much faster than the inner-product type algorithm(O(n?)-algorithm). Furthermore,
it can be observed that while the computing times of the inner-product algorithm reveal stronger
dependency on n than O(n?), those of SW algorithm do weaker dependency than O(n'°%7). With
respect to Case II, computing times are almost comparable between SW algorithm and the inner-
product algorithm. In either case, or in general, the usually stated time complexity O(n*) and
O(n'°27) of the algorithms do not agree with the behavior of actual computing times and almost
meaningless.

Table 3: Computing times (CPU time, unit: second)

) inner-product algorithm Strassen-Winograd algorithm
k Sizen (in) (SW)
CPU(,™) GC total CPU(”™) GC total

Case ]

3 8 0.008180  0.004957 0.01351 0.008301  0.005341 0.01408
4 16 0.05496 0.03483 0.09006 0.04470 0.02531 0.07020
5 32 0.4802 0.3173 0.8023 0.2416 0.1718 0.4143
6 64 4.068 3.177 7.288 1.215 1.014 2.237
7 128 35.76 29.08 65.12 6.007 4.866 10.94
8 256 307.4 311.2 622.2 28.88 28.76 58.06
Case II

3 8 0.005243  0.002421  0.008109 0.005653  0.002519  0.008416

4 16 0.05067 0.02646 0.07772 0.04965 0.02825 0.07849
5 32 0.5060 0.2568 0.7791 0.4887 0.2456 0.7359
6 64 5.382 3.623 9.046 4.821 3.174 8.040

4.3 Amount of Arithmetic Operations and Space Complexity

Our question is what a factor affect on computing time most, and whether there is a good quantity
which well reflects the computational complexity. The number of elementwise operations actually
performed, shown in Table 3] for reference, may have deep relation with the complexity, but, need-
less to say, is almost useless as symbolic computation is concerned. Computing cost depends on
the sizes or the structures of element expressions in general, but the number does not.
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Table 4: Growth and ratios of CPU times
(in)  (in) SW) , (SW) (in) ; (SW)
k n l‘k /l‘k_l lk /tk—l tk /tk

Case |

3 8 0.985
4 16 6.718 5.385 1.230
5 32 8.737 5.405 1.988
6 64 8.471 5.029 3.348
7 128 8.791 4.944 5.953
8 256 8.596 4.808 10.64
Case 11

3 8 0.927
4 16 9.664 8.783 1.021
5 32 9.986 9.843 1.035
6 64 10.64 9.865 1.116

Table 5: Number of operations on matrix elements

) inner product Strassen-Winograd
Size add/sub mult total add/sub mult total
8 448 512 960 624 448 1072
16 3840 4096 7936 5520 3136 8656

32 31744 32768 64512 43248 21952 65200
64 258048 262144 520192 321168 153664 474832
128 2080768 2097152 4177920 2321904 1975648 4297552
256 16711680 16777216 33488896 16548240 7529536 24077776

For more preciseness, we consider the number of term-wise operations. We limit our concern
to the cases with matrices of polynomial entries for simplicity, and count how many terms are pro-
cessed in all the arithmetic operations performed while matrix multiplication. The number of terms
in the sum for addition and the product of the number of terms of two factors for multiplication
will be good estimates for this count. If the form of polynomials of matrix elements is almost fixed,
it will be possible to give an upper bound for the count. Table [6l summarizes this count actually
obtained from our experiments. The total number of operations seems to have closer relation with
actual computing time.

Let’s get into more detail. For further preciseness, we have to consider the cost of coefficient
calculations, which might be well represented by the size of numeric coefficients generated during
calculation. To check this, we measured the amount of memory space allocated and exhausted in
the numeric coefficient calculations, as shown in Table[Zl This amount is the space requirement for
numeric coeflicients, which corresponds to space complexity. Finally, to confirm the correctness
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inner product

Strassen-Winograd

Si A/B
YEM add/sub mult ol(A)  addsub  mult towlB) Y
Case |
8 12800 12800 25600 14640 11200 25840 0.99
16 102400 102400 204800 99360 62400 161760 1.27
32 819200 819200 1638400 579120 302400 881520 1.86
64 6553600 6553600 13107200 3080880 1339200 4420080 2.97
128 52428800 52428800 104857600 15442800 5572800 21015600 4.99
256 419430400 419430400 838860800 74336080 22161600 96497680 8.69
Case II
8 8178 6666 14844 9005 5921 14926  0.99
16 122191 59036 181227 102764 48792 151556  1.20
32 1871637 497472 2369109 1046161 413030 1459191 1.62
64 29209204 4085384 33294588 10140399 3634367 13774766 2.42
Table 7: Total memory amount used for coeflicients (unit:byte)
Si inner product Strassen-Winograd
tren add/sub mult total add/sub mult total
Case I
8 1204875 44725 1249600 1783230 45950 1829180
16 11976300 395700 12372000 16675580 342325 17017905
32 121810500 4271100 126081600 134629575 2632175 137261750
Case II
8 179598 20065 199663 381834 19904 401738
16 1893566 179799 2073365 8859643 188212 9047855

of our assertion, we compute the ratio of the amount of memory to the computing time. Table [§]
gives the natural logarithms of the ratios. As can be seen in the table, the ratio is almost constant.
Therefore, we insist that the space requirement is an important factor which have a close relation
with computing time, and space complexity will be a good measure.
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Table 8: Ratio of memory amount to computing time

Size inner product Strassen-Winograd
add/sub mult total add/sub mult total
Case I
8 7.950 6.520 7.966 8.103 6.514 8.114
16 8.124 7.055 7.884 8.376 6.688 8.385
32 8.181 6.726 8.196 8.512 6.803 8.520
Case 11
8 7.345 6.393 7.391 7.657 6.374 7.679
16 7.386 6.364 7.426 8.053 6.380 8.062

S Implementation for Sparse Matrix and Empirical Study

Efficient use of memory space or reducing the amount of memory use often leads to speedup in
general. The result in the previous section insists, in a sense, that redundant expansion of memory
use may degrade processing speed. We often use sparse matrices in practice rather than dense ones,
and it will be the case with treating sparse matrices.

In Risa/Asir, there is prepared only one canonical matrix representation using two-dimensional
arrays, and it always requires memory space proportional to matrix size, even for zero matrices.
This representation is easy to understand and treat, however, saving of memory is not considered
and not possible.

Another problem with this representation is that every time arithmetic operation is performed,
even zero entries must be treated, usually for nothing, and its computing cost, although negligible,
can hardly be measured and thus predicted. To sharpen the estimate the computing cost based on
the hypothesis in the previous section, we ought to discard zero entries from matrix representation
for sparse matrices. We implement a new data structure for sparse matrices, which requires memory
space proportional to the number of non-zero elements, independently of the matrix size.

5.1 Index-type Representation of Matrix

A new matrix representation is designed with policy of use of less memory. It is a list of non-zero
elements, which is same as polynomial representation in Risa/Asir. The following portion of C
program describes the definition, and Figure [I] depicts a simple example. A matrix is represented
by struct oIndMat, and each element, represented by struct oIndEnt, is stored in struct oIndMatC
of chunk of memory.

‘We consider a method for fast access to each element. Let matrix size be n X m, stored in the
struct oIndMat as row and col, and let the index of an element a;; be

(i-1)xm+j,

which is stored in the field cr of struct IndEnt. For this reason, we call this new matrix repre-
sentation “index type” matrix. The field clen of struct oIndMat contains the number of non-zero
elements, and we can discriminate a zero matrix by checking the field. Notice again that with index
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IndMat

row, col

clen <———— Number of IndMatC
[ *root

*toor

IndmatC
*next data | data
f pointer pointer
next data (- data
‘T pointer pointer
*fore null daFa - - - dat'a null
pointer pointer

Figure 1: Diagram of Index-type Representation

type matrix, access to zero elements never occurs because the representation does not contain zero
entries.

5.2 Comparison of Matrix Representation by Timings

We measure timings of matrix multiplications of sparse matrices in canonical matrix representation
and index type matrix, and compare these two matrix representations. We use the matrix of Case I
in Table[2] with some randomly-chosen elements of each of A and B replaced by zero, and measure
timings for various ratios of the number of zeros, matrix sparseness. Throughout this section, we
use this matrix for experiments. Table [9 summarizes the result of our experiment, with ratio of the
number of zero elements 1/2 to 31/32.

When matrices are dense or not sparse, there is no distinct difference of speed between two
types of representations. However, as matrices get sparse, the index type matrix representation gets
more speeded and become faster than the canonical matrix representation.

5.3 Comparison of Algorithms in Index-type Matrix Representation

We also implemented Strassen-Winograd algorithm for index type matrix, and compared with the
inner-product algorithm. Table [10] shows timings for sparse matrices, where the matrices used
are the same as in the previous subsection. The results in Table [10] indicate that SW algorithm is
much slower than the inner-product algorithm and seems almost useless, at least as sparse matrices
represented as index type matrix are concerned.
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#define IndMatCH 64 /* chunk size */
typedef struct oIndMat { /* matrix structure */
short id;
int row, col; /* matrix size,

the number of rows and columns */

int clen; /* the number of structure IndMatC’s */
pointer *root; /% pointer to the first chunk data */
pointer *toor; /* pointer to the last chunk data */

} *IndMat;

typedef struct oIndMatC { /* structure to store chunk data */
pointer *fore; /% pointer to the previous chunk */
pointer *next; /* pointer to the next chunk */
IndEnt ient[IndMatCH];

} *IndMatC;

typedef struct oIndEnt { /* structure to store real data */
int cr; /% index of this element */
int row, col; /% position at matrix */
pointer *body; /* real data of an element */

} IndEnt;

5.4 Sparseness, Representation and Algorithm

We are investigating a good method to treat sparse matrices. In the previous subsections, we
observed that the index type representation reveals better performance than the canonical repre-
sentation if we use the inner-product algorithm, and that for algorithm comparison in the index
type representation, Strassen-Winograd algorithm never be better than the inner-product algorithm,
unlike the results of dense cases in Section @l We wonder the latter result; isn’t the index type
representation suited for SW algorithm, or isn’t SW algorithm suited for sparse matrices? With
matrix sizes being fixed as 64 x 64, we measure every possible combinations of representations and
algorithms, and observe how computing times change as the ratio increases from 0.

Table [[1] summarizes the timings of our final experiment. It shows that computing times are
affected by the choice of algorithm much more than that of matrix representation, SW algorithm
is useless for sparse matrices, and with the inner-product algorithm, the index type representation
becomes much faster than the canonical representation as matrices get sparse. Notice that for dense
matrices, the computing times in both matrix representations are equivalent. From these facts, we
may insist that our new matrix representation, index type representation, is suited for computer
algebra, rather than two-dimensional array representation. Also notice that the the inefficiency of
SW algorithm for sparse matrices will be caused by the violation of sparseness by additions and
subtractions of submatrices, which might be justified by the fact that SW algorithm get fast when
matrices are extremely sparse.
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Table 9: Computing times in canonical representation and index-type representation (unit:usec)

ratio ) canonical type matrix index type matrix
of0s D% cpy GC otal CPU GC total
8 1073 1073 1045 1044
16 12570 6776 19370 12190 6305 19060
1 32 117600 74080 192100 113400 63890 177600
2 64 967100 631400 1607000 919200 499900 1427000
128 8052000 5227500 13340000 7342000 2078000 9462000
8 392 390 372 373
16 2055 2055 1981 2017
3 32 21450 11360 32850 23520 12000 35780
4 64 231500 113900 345900 209900 81170 291700
128 1957000 1101000 3069000 1766000 647600 2423000
8 101 100 69 68
16 561 560 403 403
7 32 5104 5113 3765 3801
8 64 46530 11230 57810 36840 14010 50920
128 475300 128200 609400 356300 175400 537700
8 46 45 25 24
16 272 271 103 102
15 3 2370 2377 995 996
16 64 17770 17830 7307 7318
128 154600 23210 178100 68900 22340 91370
8 45 42 17 17
16 215 213 39 35
31 3 1579 1575 273 270
32 w4 12260 12270 1862 1861
128 102000 102100 15750 15790

6 Conclusion

To investigate and find a relation between computing time in practice and the complexity obtained
by theoretical analysis in the matrix multiplication algorithms, we have repeated experiments and
examined their results in detail. Throughout this empirical study, we found that computing time
reveals close connection with space complexity, in the case of matrix multiplication with polyno-
mial elements. Based on this fact, we proposed a new matrix representation. Empirical tests using
our simple implementation of matrix arithmetics indicated satisfactory results; in the case of dense
matrices, the computing speed in the new representation is comparable with the usual canonical
representation, and becomes much faster as matrices get sparse. So, to conclude, we state that the
new matrix representation is useful and we need to consider much more about matrix representation
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Table 10: Computing time of index type matrix multiplication (unit:usec)

ratio . inner product Strassen-Winograd
of0s D% cpy GC total CPU GC total
8 1045 1044 3812 2853 6760
16 12190 6305 19060 35500 21130 56780
1 32 113400 63890 177600 322600 209200 532800
2 64 919200 499900 1427000 2457000 1954000 4430000
128 7342000 2078000 9462000 18310000 17560000 36120000
8 372 373 1784 2440 4227
16 1981 2017 16630 11280 27950
3 32 23520 12000 35780 206000 120900 327600
4 64 209900 81170 291700 1888000 1363000 3269000
128 1766000 647600 2423000 15470000 12380000 28020000
8 69 68 271 271
16 403 403 3140 3339 10770
7 32 3765 3801 97620 51600 149500
8 64 36840 14010 50920 1269000 853300 2131000
128 356300 175400 537700 12010000 9545000 21710000
8 25 24 120 119
16 103 102 3140 3140
15 3 995 996 42790 14500 57390
16 64 7307 7318 612000 345600 959300
128 68900 22340 91370 7884000 6280000 14280000
8 17 17 32 30
16 39 35 966 965
31 3 273 270 17130 6751 23940
32 w4 1862 1861 240000 79500 320300
128 15750 15790 4148000 3260000 7490000

for computer algebra.
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