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1 Introduction

Let D be the sheaf of analytic differential operators of n variables x1, . . . , xn. We

consider a left ideal I of D generated by {`1, . . . , `m} which are in the Weyl algebra D =

C〈x1, . . . , xn, ∂1, . . . , ∂n〉. If no confusion arises, we also denote by I the left ideal D ·
{`1, . . . , `n} in D. Assume that D/I is holonomic. It was proved by M. Kashiwara that

the germs of the k-th extension group ExtkD(D/I, Ô) form a finite dimensional vector

space over the field of complex numbers C [3]. We note that the vector space is called

a k-th order (cohomological) solution space. In [5], an algorithm by which to determine

the dimension of the vector space was given. In the present paper, we will present an

algorithm by which to construct a basis of this vector space in a free module over the

formal power series. In [5], we studied the adapted free resolution of D/I and an algorithm

of computing restrictions of D-modules. The algorithm of evaluating the dimension of the

germ of the k-th extension group was an immediate application of Cauchy-Kowalevski-

Kashiwara’s theorem on the restriction of the D-module D/I to the origin and the k-th

extension group. In the present paper, we will explicitly construct matrix representations

of boundary operators of complexes appearing in a proof of the CKK Theorem to construct

series solutions.

Let

· · · ψi+1→ Dbi
ψi→ Dbi−1 → · · · → D → M → 0
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be a free resolution of M = D/I. Then, for a left D-module N , the vector space

Ker
(
HomD(Dbi , N) → HomD(Dbi+1 , N)

)
Im (HomD(Dbi−1 , N) → HomD(Dbi , N))

is denoted by Exti
D(M,N) and is called the k-th extension group. When M and N are

holonomic D-modules, H. Tsai and U. Walther [7] presented an algorithm by which to

determine a basis of the extension group. Let us consider the sheaf of k-th extension group

ExtkD(D/I, Ô), which can be defined in a similar way. In this case, Ô is not holonomic over

D, and hence we cannot apply their algorithm; we need a different approach.

When n = 1, it is relatively easy to determine bases of ExtkD(D/I, Ô)0, k = 0, 1 where

I = D · `. Consider the free resolution

0 −→ D ·`−→ D id−→ D/I −→ 0.

By applying HomD(·, Ô)-functor, we have the complex

0 ←− Ô `·←− Ô ←− 0.

Hence, we have

Ext0D(D/I, Ô) = {f ∈ Ô | ` • f = 0}, Ext1D(D/I, Ô) = Ô/` • Ô

following the definition of Ext. Algorithmic methods by which to determine bases of the

vector spaces above are well-known. Among these, we would like to examine in greater

detail the method explained in the introductory text book by T. Oaku [4]. The key in

this method is to regard Ô as an infinite dimensional vector space over C and to regard

the operator ` as a linear map. Oaku uses a b-function to reduce a problem of infinite

dimensional vector spaces into a problem of finite dimensional vector spaces. Our method

is a natural generalization of this method.

The motivation for the present study is the problem of constructing series solutions in

Gevrey classes of an A-hypergeometric system [1]. See also [2] for the same problem for

Lauricella hypergeometric functions. We hope that our algorithm can be applied to this

problem. In April 2003, the author discussed this problem with F.J. Castro-Jiménez, who

presented an explicit computation of k-th order solutions of the hypergeometric system for

A = (1, 2). This example was exciting and has been the motivation for the present study.

2 Orders in Ô
Let K be a field and we consider the ring of the formal power series Ô0 = K[[x1, . . . , xn]]

in n-variables. We will omit the subscript 0 of Ô in the sequel. When we apply the results

of this section for k-th order solutions, K is assumed to be C. We regard Ô as an infinite
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dimensional vector space over K by sorting monomials of x by an order. In other words,

we identify Ô with a vector space by sorting the coefficients of power series by the order.

Let us firstly consider when n = 1. If we sort the monomials as 1, x, x2, x3, . . ., then we

have the canonical morphism σ from K∞ to Ô as

K∞ := {c = (c0, c1, c2, . . .) | ci ∈ K} σ−→ K[[x]]
c

σ7−→ f =
∑ ck

k! x
k

In this example, the coefficients ck is sorted as c0, c1, c2, . . ..

When n > 1, we have several natural choices to sort monomials in x depending on a

weight vector and a term order; let w ∈ Rn be a weight vector satisfying wi > 0 and ≺ a

term order in Zn
≥0. We sort monomials in x and consequently the coefficients ck of power

series by the order ≺w. For example, when w = (1, . . . , 1) and ≺ is lexicographic order,

we sort the coefficients ck as c = (c0···0, c10···0, . . . , c0···01, c20···0, . . .). In this case, we define

the canonical morphism σ by

Kn∞ := {c = (c0···0, c10···0, . . .) | cα ∈ K} σ−→ K[[x1, . . . , xn]]
c

σ7−→ f =
∑ cα

α! x
α

Here, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n .

Finally, let us discuss how to encode Ôr as an infinite dimensional vector space over

K. In this case, we use the degree shift vector s ∈ Zr in addition to a weight vector w and

a term order ≺. Let eix
α be the element of Ôr where ei is the i-th standard vector. As

in the theory of Gröbner basis for D [5], we define ordw[s](eix
α) = w · α + si. To define

the canonical morphism σ, we sort eix
α lexicographically by ordw[s], −i and ≺ for α. The

canonical morphism is defined as follows

(Kn∞)r = {c = (ciα) | ciα ∈ K, } σ−→ K[[x1, . . . , xn]]r

c
σ7−→ f =

∑ ciα

α! xαei

(1)

Here, i = 0, . . . , r − 1, α ∈ Nn
0 and e0, . . . , er−1 are standard unit vectors.

We denote by (Kn∞)r [s]≤m the image by σ−1 of eix
α of which ordw[s]-degree is less

than or equal to m. There exist the following natural projections

τm : (Kn∞)r [s] −→ (Kn∞)r [s]≤m

τm′m : (Kn∞)r [s]≤m′ −→ (Kn∞)r [s]≤m

Here, m′ ≥ m and (Kn∞)r [s] is the union of (Kn∞)r [s]≤m for the natural numbers m in

(Kn∞)r.

We call τ the truncation map.

Example 2.1 Put w = (1, 1) and s = (0, 0,−1). We denote eix
j
1x

k
2 by [i, j, k]. We consider

(K2∞)3[(0, 0,−1)]. The elements of which degree is less than or equal to 1 are

[0, 0, 0], [1, 0, 0], [2, 1, 0], [2, 0, 1], (degree 0, 4 elements )
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[0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [2, 2, 0], [2, 1, 1], [2, 0, 2](degree 1, 7 elements).

The projection τ1,0 is a map from K11 to K4.

3 Adapted resolution and induced linear map

We fix a weight vector w in the sequel. We consider a complex of left D-modules with

degree shifts m ∈ Zp, m′ ∈ Zq, m′′ ∈ Zr

Dp[m] A→ Dq[m′] B→ Dr[m′′] (2)

(see [5] on the degree shift). We suppose that the following two conditions are satisfied.

(1) ker(B) is generated by rows Ai of the matrix A. (2) in(−w,w)[m′](ker(B)) is generated

by in(−w,w)[m′](Ai). When these two conditions are satisfied, the complex is called adapted

at the object Dq[m′]. A free resolution is called adapted if it is adapted at every object

in the complex. The notion is introduced in [5] and a free adapted resolution can be

constructed by a Gröbner basis method for a given left D module D/I, a weight vector

w, and a term order ≺, which is used as a tie-breaker. See [6] for an efficient construction

algorithm.

Let us consider the ring of formal power series Ô = K[[x1, · · · , xn]], and a complex

Dp[s] ·A−→ Dq[t] ·B−→ Dr[u] (3)

which is adapted at the middle object Dq[t]. Note that we suppose that Dp, Dq, Dr are

sets of row vectors. By applying HomD(·, Ô) to the complex, we have

Ôp[s] A•←− Ôq[t] B•←− Ôr[u] (4)

where Ôi, (i = p, q, r) are regarded as sets of column vectors. By the canonical isomorphism

σ (1) induced by the degree shift, the weight vector and the tie-breaking term order ≺, we

have the following complex of linear vector spaces

(Kn∞)r [u] ·B̄T

−→ (Kn∞)q [t] ·ĀT

−→ (Kn∞)p [s]. (5)

Here, B̄T and ĀT are block upper triangular matrices with the elements in K. The blocks

are partitioned by ordw[·]-degree. The two properties will be key ingredients of our al-

gorithm. Since it is block upper triangular, we obtain the following complex of finite

dimensional vector space by truncating to the degree m

(Kn∞)r [u]≤m
·τm(B̄T )−→ (Kn∞)q [t]≤m

·τm(ĀT )−→ (Kn∞)p [s]≤m (6)

Let us illustrate the matrix representations of the boundary operators ĀT and B̄T in

terms of boundary operators in (5.2) of [5], which are used to compute restrictions of
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D-modules. We consider the quotient Ker (A•)/Im (B•) in (4). First, we note that

Ker (A•) =


f

∣∣∣∣∣∣∣∣∣∣∣
A • f = 0, f =


f1

·
·
·
fq

 , fi ∈ Ô


and

Im (B•) =


Bg

∣∣∣∣∣∣∣∣∣∣∣
g =


g1

·
·
·
gr

 , gi ∈ Ô


.

We denote by Aj
` the (j, `)-th element of the matrix A. Then the condition A • f = 0 is

equivalent to (
∂i • (

∑
`

Aj
` • f`)

)
(0) = 0, for all i ∈ Nn

0 and j = 1, . . . , p. (7)

Define aij
k` by

normallyOrdered(∂iAj
`)|x=0 =

∑
k

aij
k`∂

k, aij
k` ∈ K.

Here, normallyOrdered(L)|x=0 means that

(1) expand L ∈ D into normally ordered expression as
∑

aαkxα∂k

and then

(2) replace all xi by 0.

In terms of aij
k`, the condition (7) is equivalent to∑

k,`

aij
k`f

(k)
` (0) = 0, for all i ∈ Nn

0 , j = 1, . . . , p (8)

where f
(k)
` is the k = (k1, . . . , kn)-th derivative of f` ∈ Ô. Note that ciα in (1) is equal

to f
(α)
i (0). Therefore, under the morphism σ, Ker (A•) is nothing but the kernel of the

matrix defined by (aij
k`).

Next, we consider B. Let Bj
` be the (j, `)-th element of B. Define bij

k` by

normallyOrdered(∂iBj
` )|x=0 =

∑
bij
k`∂

k. Then the i-th coefficient of the series expansion of∑
` Bj

` • g` is expressed as(
1
i!

∂i •

(∑
`

Bi
` • g`

))
(0) =

1
i!

∑
k,`

bij
k`g

(k)
` (0).

Therefore, under the morphism σ, Im (B•) is nothing but the image of the matrix defined

by (bij
k`).
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The matrices (aij
k`) and (bij

k`) agree with those appearing to compute restrictions of

D-modules [5, Theorem 5.3]. Let us explain this fact. The boundary operators A and B

induce the following K-linear maps

Ω ⊗D Dp[s] ·Ā−→ Ω ⊗D Dq[t] ·B̄−→ Ω ⊗D Dr[u]

where Ω = D/(x1D + · · · + xnD). The cohomology groups of this complex are called

restrictions. See [5] for details on computing restrictions. Let us construct matrix rep-

resentations of Ā and B̄. We denote by ej the j-th standard vector. The vector space

Ω ⊗D Dp[s] is spanned by ∂iej , (i ∈ Nn
0 , j = 1, . . . , p), which is sent by the linear map ·Ā

to normallyOrdered(∂i
∑

` Aj
`e

`)|x=0 =
∑

k,` aij
k`∂

ke`. By sorting ∂ie` by the same order

to sort the coefficients of power series (we use the correspondence ∂ie` ↔ xie`−1), we

conclude that the matrix representation of Ā agrees with the transpose of the ĀT in (5).

The same assertion holds for B̄. This relation will be used in the proof of Theorem 3.1.

Let M = D/I be a left holonomic D-module and

· · · ψi+1→ Dbi
ψi→ Dbi−1

ψi−1→ · · ·

an adapted free resolution associated to a weight vector w. We assume that the complex (3)

is a part of this adapted resolution. Let k1 be the maximal integral root of the b-function

of M associated to the weight (−w,w) [5].

Theorem 3.1 The truncation map

τm′,m :
Ker τm′(ĀT )
Im τm′(B̄T )

−→ Ker τm(ĀT )
Im τm(B̄T )

is an isomorphism of vector spaces when m′ > m ≥ k1.

Proof. The matrix τm′(ĀT ) is block triangular. Define submatrices AT
ij by

τm′(ĀT ) =
(

AT
11 AT

21

0 AT
22

)
, τm(ĀT ) = AT

11.

Submatrices BT
ij are defined analogously. Since (6) is a complex for any m, we have

BT
11A

T
11 = 0, BT

11A
T
21 + BT

21A
T
22 = 0, BT

22A
T
22 = 0. We note that the boundary operators

AT
22 and BT

22 agree with those in the complex (5.3) of [5]. Since the complex (5.3) in [5]

is exact when m′ > m ≥ k1, we have Im BT
22 = KerAT

22. Let (p, q) be in Ker τm′(ĀT ); we

assume that pAT
11 = 0 and pAT

21 + qAT
22 = 0. Then, we can define a natural projection

ψ : Ker τm′(ĀT ) 3 (p, q) 7→ p ∈ Ker AT
11.

By utilizing the properties of the matrices AT
ij , BT

ij stated above, it is easy to check that ψ

induces a well-defined map ψ̄ from Ker τm′(ĀT )/Im τm′(B̄T ) to Ker τm(AT
11)/Im τm(BT

11)

and that ψ̄ is injective. It follows from Theorem 5.3 of [5] that the dimensions of Ker τm′ (ĀT )

Im τm′ (B̄T )

and Ker τm(ĀT )
Im τm(B̄T )

agree. Therefore, we conclude that ψ̄ = τm′,m is an isomorphism. Q.E.D.
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The next theorem immediately follows from Theorem 3.1.

Theorem 3.2 Retain the notation of the proof of Theorem 3.1. When m′ > m ≥ k1, for

c ∈ Ker τm(ĀT ), there exists a vector c′ such that (c, c′) ∈ Ker τm′(ĀT ). In other words,

the linear inhomogeneous equation with unknown vector c′

c · AT
21 + c′ · AT

22 = 0

is always solvable for c satisfying c · AT
11 = 0.

4 Algorithm

Put M = D/I. We are ready to state our algorithm to construct a basis of the d-th

order solutions. It follows from Theorems 3.1 and 3.2.

Algorithm 4.1 Construction of d-th cohomological solution Extd
D(M, Ô)

Step 1. Construct an adapted resolution (ψi) of D/I. We assume that the resolution is

written as (3) at the degree d. Note that we have assumed A = ψd+1, B = ψd.

Step 2. Let k1 be the maximal integral root of the b function of M with respect to the

weight vector (−w,w).

Step 3. Obtain a basis of
Ker τk1(Ā

T )
Im τk1(B̄T )

as a K-vector space. We denote the basis by c(1), . . . , c(e).

Step 4. By repeating to solve the linear equation in Theorem 3.2, extend the vector c(i) to

an infinite dimensional vector c(i)
∞ in (Kn∞)q [t].

Step 5. Output σ(c(1)
∞ ), . . . , σ(c(e)

∞ ) ∈ K[[x1, . . . , xn]] as a basis of the solutions.

Remark.

(1) In Step 3, our implementation chooses a basis in Ker τk1(Ā
T )∩

(
Im τk1(B̄

T )
)′ where V ′

denotes the orthogonal complement of the vector space V by the standard innerproduct.

(2) Note that we have to truncate the iteration of Step 4 when we execute this algorithm

on a computer.

(3) Let J be a submodule of D`. A basis of ExtdD(D`/J, Ô) can be constructed in an

analogous way.

The proof of the following theorem follows from discussions in Section 3.
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Theorem 4.2 The set of power series σ(c(1)
∞ ), . . . , σ(c(e)

∞ ) is a basis of

Extd
D(M, Ô) =

f ∈ Ôq

∣∣∣∣∣∣∣∣∣ A


f1

·
·
fq

 = 0

B


g1

·
·
gr


∣∣∣∣∣∣∣∣∣ gi ∈ Ô


as a K-vector space. In particular, when d = 0, Extd

D(M, Ô) is a basis of the classical

power series solutions since the denominator is 0 in the expression above.

Example 4.3 Put

I = D · {x∂x − x(x∂x + y∂y + 2)(x∂x + 3), y∂y − y(x∂x + y∂y + 2)(y∂y + 5)}

and consider M = D/I. The ideal I annihilates the Appell function F2(2, 3, 5, 1, 1, x, y).

An adapted resolution of M with respect to the weight vector (−1,−1, 1, 1) is as follows.

0 −→ D2[(−1, 0)] A−→ D3[(0, 0,−1)] B−→ D[(0)] −→ M −→ 0

Here,

B =

 x∂x − x3∂2
x − x2y∂x∂y − 6x2∂x − 3xy∂y − 6x

y∂y − xy2∂x∂y − y3∂2
y − 5xy∂x − 8y2∂y − 10y

b31


A =

(
a11 a12 −1 + xy∂y + 6x − 18xy − 117x2y − 135xy2

−y∂y + 15y + 45xy x∂x − 9x − 27xy 1

)
where

b31 = −x3y∂2
x∂y + x2y2∂2

x∂y − x2y2∂x∂2
y + xy3∂x∂2

y + 5x2y∂2
x − 7x2y∂x∂y + 9xy2∂x∂y − 3xy2∂2

y+

15x3y∂2
x+6x2y2∂x∂y−9xy3∂2

y+45x4y∂2
x+45x3y2∂x∂y−27x2y3∂x∂y−27xy4∂2

y+270x3y∂x−
135x2y2∂x + 135x2y2∂y − 216xy3∂y + 270x2y − 270xy2

and

a11 = xy2∂x∂y − xy2∂2
y + y3∂2

y + 5xy∂x − 7xy∂y + 8y2∂y − 5y+33xy2∂y+60xy+162x2y2∂y+

135xy3∂y + 315x2y − 270xy2 − 2565x2y2 − 2025xy3 − 5265x3y2 − 6075x2y3,

a12 = −x3∂2
x − 3xy∂y + 3x − 18x2y∂x − 9x2y∂y − 54x2 + 27xy − 117x3y∂x − 135x2y2∂x −

27x2y2∂y − 27x2y + 1053x3y + 1701x2y2 + 3159x3y2 + 3645x2y3.

Since the b-function is s, the number k1 is equal to 0. The dimension of Ext0D(M, Ô)

is 1 and ∑
m,n

(2)m+n(3)m(5)n

m!n!
xmym
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is a basis.

The dimension of Ext1D(M, Ô) is equal to 2 at the origin. Let us construct a basis of

this vector space. The induced linear maps on the space of truncated power series τ1(ĀT ),

τ1(B̄T ) are

τ1(ĀT ) =



0 −5 0 0 60 0 0 15
3 0 0 −108 27 0 −9 0
−1 0 0 12 0 0 1 0
0 −1 0 0 7 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 −7 6 0 −1
0 0 0 6 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0



,

τ1(B̄T ) =

 0 0 0 0 −6 0 0 −10 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0

 .

Submatrices standing for the underlined elements are equal to τ0(ĀT ), τ0(B̄T ). A ba-

sis of the vector space Ker τ0(Ā
T )

Im τ0(B̄T )
is (1, 0, 0,−5), (0, 1, 3, 0). Here the monomials eix

jyk,

which is encoded as [i, j, k], are sorted as [[0, 0, 0], [1, 0, 0], [2, 1, 0], [2, 0, 1]]. Then the 0-th

approximation of a basis of series solutions is

(1, 0,−5y), (0, 1, 3x).

This solution can be extended to the 1-th approximation by solving the linear inhomoge-

neous equation in Theorem 3.2 for m = 0 and m′ = 1 as

(1 + 10y, 0,−5y − 45yx + 60y2/2!),

(0, 1 + 6x, 3x − 36x2/2! + 27yx).

The set of indices is sorted as

[[0, 0, 0], [1, 0, 0], [2, 1, 0], [2, 0, 1], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [2, 2, 0], [2, 1, 1], [2, 0, 2]].

Repeating the procedure for τ2(ĀT ), τ2(B̄T ), we obtain the following basis of second

approximate solutions

( 1 + 10y +
1601775000
10611803

x2 +
574824600
10611803

yx + 180y2,

574824600
10611803

yx +
278581950
10611803

y2,

−5y − 45yx + 60y2 − 38669400
10611803

yx2 − 39525750
10611803

y2x + 7020y3),
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(
280878030
10611803

x2 +
344820564
10611803

yx, 1 + 6x + 72x2 +
344820564
10611803

yx +
2064283056
10611803

y2,

3x − 36x2 + 27yx − 2376x3 +
15126426
10611803

yx2 +
13920984
10611803

y2x).

Here, we set xiyj = xiyj/(i!j!).
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