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Abstract

redlog is a system for computing with first-order logic and propositional logic with
quantification. It is tightly integrated into the computer algebra system reduce. Assuming
a broad audience, we motivate the use of first-order logic to model problems. Then,
by employing quantifier elimination methods, simplification techniques and normal form
computations, highly non-trivial problems can be solved. We give an overview of redlog’s
capabilities, features and applications. Finally we explain how computer algebra benefits
from computer logic and vice versa.

1 Introduction

Propositional logic is a well-established tool in mathematics, computer science and

engineering. In short, Boolean expressions are built from Boolean variables and Boolean

connectives, which include ∧ ,∨, ¬ and −→. If truth values for all Boolean variables are

given, a Boolean expression can be evaluated to either true or false.

First-order logic generalizes this approach in two ways. First, the Boolean variables

are replaced by more sophisticated atomic formulas, which in turn can contain variables.

Admissible atomic formulas are given by fixing a language. Second, by allowing variables to

be existentially or universally quantified, the expressiveness of such formulas is drastically

increased.

The following would be a first-order formula over a language, which includes a constant

0 and an ordering <, such as the language of ordered rings:

ϕminpos := ∃x
(
x > 0 ∧ ∀y

(
y > 0 −→ (y > x ∨ y = x)

))
.

Such formulas have a more complex structure than expressions from propositional logic,

but on the other hand much more interesting things can be described. They are still

sufficiently comprehensible by humans.
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To attach meaning to ϕminpos, we first have to fix a structure, i.e. a domain and seman-

tics for 0 and <. First, let us consider the reals R and interpret 0 and < as usual. Then

ϕminpos states the following:

“There exists an x such that x is positive, and for all y such that y is positive

as well, y is greater than or equal to x.”

In other words, ϕminpos holds in R if and only if there exists a minimal positive element.

As an easy proof shows that such an element does not exist, ϕminpos is equivalent to false in

R. Second, consider the natural numbers N and interpret 0 and < as usual. Now ϕminpos

is certainly equivalent to true, as 1 is a minimal positive element. Altogether, by fixing a

structure and by using our understanding of the specific settings, we were able to find for

a given formula a simpler, quantifier-free one. Note that this example was a special case,

as all occurring variables lie within the scope of a quantifier. In general, free variables of

the formula can occur in the quantifier-free description as well. We call free variables also

parameters in this context. Consider the formula ∃x(x2 + bx+ c = 0). A simpler condition

on b and c, such that the quadratic equation has a real root, is b2−4c ≥ 0. Finding simpler

formulas is what quantifier elimination is all about.

More precisely, we define: For a given language L and an L-structure A, A admits

quantifier elimination over L if and only if for any formula ϕ there exists a quantifier-free

formula ϕ′ such that every free variable of ϕ′ is a free variable in ϕ and ϕ ←→ ϕ′ holds

in A. Similarly quantifier elimination wrt. a class of structures over a fixed language is

defined.

The question arises, for which classes of structures over which languages quantifier

elimination is algorithmically possible. There are striking positive and negative results.

The class of real closed fields, which includes the reals R, over the language of ordered

rings admits quantifier elimination. Integers over the language of rings do not. If one,

however, restricts the language to Presburger arithmetic, they do.

The positive results, numerous possible applications and the fact that quantifier elim-

ination algorithms are too complicated to be executed by hand, except for very simple

examples, raise the desire to turn the theoretical possibility into a practical implementa-

tion. This is where redlog comes into play. The development of redlog was started in

1992 by the first author together with T. Sturm. Meanwhile the second author has joined

the development team.

The plan of this paper is as follows: In the next section we show an example applica-

tion. We learn that it is an advantage to have several quantifier elimination methods and

further simplification and normal form computation routines at hand. Then in Section 3

we present the redlog system. Quantifier elimination, e.g. for the reals, has many im-

portant applications: In Section 4 we give an overview. We finally make the point, that

integrating a logic system into a computer algebra system is of mutual benefit and avoids
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isolated solutions.

2 An Illustrating Example

In this section we see a classical example from real algebraic geometry. The example

comes in two parts. In the first part, we solve a problem by simply applying quantifier

elimination. The way the subsequent problem in the second part is treated, however,

communicates a more subtle point: If a problem is too large to be automatically solved

straightforwardly by quantifier elimination, there are still other options to be considered,

which can lead to success. All times given are on a 2GHz Pentium 4 using up to 128MB

of memory.

In this section, the reals and the language of ordered rings is the setting we operate in.

Here quantifier elimination is possible and implemented in the context ofsf of redlog.

There are more contexts available, as will be explained in Section 3. Interesting cutting-

edge applications are by far not limited to real algebraic geometry, as will be seen in the

overview given in Section 4.

2.1 Membership of the Real Enneper Surface

The real Enneper surface, see e.g. [5], is defined parametrically by

x = 3u + 3uv2 − u3 y = 3v + 3u2v − v3 z = 3u2 − 3v2,

in other words as the image of the function

f : R2 −→ R3 with f(u, v) = (3u + 3uv2 − u3, 3v + 3u2v − v3, 3u2 − 3v2).

The complex counterpart of the above surface dates back to the German mathematician

Alfred Enneper who constructed the surface in 1863. It is a well known minimal surface.

Given a point (x, y, z) ∈ R3 we cannot easily decide, whether it is contained in the

Enneper surface or not. This task is necessary e.g. for plotting the surface. A point is

contained in the surface, if there is a (u, v) ∈ R2, such that f(u, v) = (x, y, z). This

condition is given by the following formula:

ϕ := ∃u∃v
(
x = 3u + 3uv2 − u3 ∧ y = 3v + 3u2v − v3 ∧ z = 3u2 − 3v2

)
.

We are looking for a formula ψ in the variables x, y, and z such that ψ(x, y, z) is true if

and only if ϕ(x, y, z) is true. In other words, we want to find a quantifier-free equivalent

for ϕ. By real quantifier elimination, such a formula can be found algorithmically.

There are three different methods for quantifier elimination available for this setting:

The virtual substitution method, a method based on partial cylindrical algebraic decom-
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position (cad) and a method based on multivariate real root counting. Each method has

advantages and disadvantages, as explained in Section 3.

The third method allows to compute in about 2.6 s a quantifier-free equivalent ψ con-

taining 164 atomic formulas. Both other methods fail to eliminate the formula, because

of degree restrictions in the first case, and limited resources for the cad method. The

computed result allows to decide in less than 0.1 s whether a given point belongs to the

Enneper surface.

2.2 Real and Complex description of the Enneper Surface

We have computed a description ψ of the real Enneper surface containing no quantifiers.

For the complex Enneper surface, defined as the real one, but for complex variables, the

following description is known:

ψ′′ := 19683x6 − 59049x4y2 + 10935x4z3 + 118098x4z2 − 59049x4z +

59049x2y4 + 56862x2y2z3 + 118098x2y2z + 1296x2z6 +

34992x2z5 + 174960x2z4 − 314928x2z3 − 19683y6 + 10935y4z3 −

118098y4z2 − 59049y4z − 1296y2z6 + 34992y2z5 − 174960y2z4 −

314928y2z3 − 64z9 + 10368z7 − 419904z5 = 0.

The most natural way to find out whether ϕ′′ is a valid description in the reals, too, would

be to apply quantifier elimination to

∀x∀y∀z(ψ ←→ ψ′′).

This problem, however, turns out to be too large to be practically feasible. But we still

have not run out of options.

redlog provides several strategies for simplifying formulas [11]. By applying an ad-

vanced simplifier, which uses Gröbner bases internally, we can compute in 1.6 s a disjunctive

normal form ψ′ of our result. It contains 11 conjunctions with 57 atomic formulas in total.

Let us thus write ψ′ as ψ1 ∨ · · · ∨ ψ11 with conjunctions ψi. Unfortunately, even with the

smaller but equivalent version ψ′ used for ψ, the formula above still cannot be eliminated

within reasonable time.

Besides simplification of a formula, redlog can simplify a formula wrt. a given theory,

i.e. a set of atomic formulas considered as a conjunction. Then the simplification result is

equivalent to the input formula for all values, for which the theory holds. For the computed

disjunctive normal form we can simplify the equation ψ′′ wrt. each conjunction ψi, viewed

as the set of the contained atomic formulas. redlog computes in each case true within

0.1 s. So far we have proved ψ′ −→ ψ′′.
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It still remains to prove the other direction ψ′′ −→ (ψ1 ∨ . . . ∨ ψ11). Again, we break

this problem down into smaller ones by considering the four cases x = 0, y = 0, z = 0 and

x 6= 0 ∧ y 6= 0 ∧ z 6= 0. The first three cases take less than 0.2 s. As for the forth case, by

finding

∃x∃y∃z(x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ ψi)

to be false except for i = 1 and i = 3, it suffices to prove

(x 6= 0 ∧ y 6= 0 ∧ z 6= 0) −→
(
ψ′′ −→ (ψ1 ∨ ψ3)

)
.

By making further case distinctions, and by further splitting up these cases, we finally can

finish the proof. However, at this point we can safely end the example, as we have seen

quantifier elimination, simplification and normal form computation techniques in action.

The overall computing time amounts to about 8 s. In 1998 the first author succeeded to

prove the equivalence between ψ and ψ′′ by using redlog [7]. At that time this was an

open problem. The overall computation time in 1998 was 30min on a 140MHz Sun Ultra

Sparc 1 workstation.

3 REDLOG, the REDUCE Logic System

redlog extends the reduce computer algebra system to a computer logic system.

More precisely, redlog’s domain is first-order logic. Recent work was done to make propo-

sitional calculus with quantification of Boolean variables available in this framework [19].

As most prominent feature, redlog offers quantifier elimination. As explained in the in-

troduction, it is necessary to fix a language and a class of structures over this language.

In redlog’s terms, this is called a context. Fixing a context is not only imposed by the

wish to eliminate quantifiers. Advanced simplification techniques as well as sophisticated

normal form computation methods depend on a context-specific part. The impact of this

on design issues of redlog is discussed in greater detail in [10].

Next we give an overview of the currently available contexts. Each context includes

procedures for Boolean normal form computation, i.e. conjunctive and disjunctive normal

form computation. In addition, minimal prenex normal forms, anti-prenex normal forms

and negation normal forms can be computed in each context.

• ofsf: real closed fields over the language of ordered rings. This class includes the

reals R. There are three quantifier elimination methods available.

Originally, linear quantifier elimination based on the virtual substitution method [25]

was implemented. This was then extended to deal with higher degrees [26] in special

cases. For problems with lots of parameters, many variables and low degrees this

method is the best choice, as parameters do not contribute to the complexity in a

relevant way. The output formulas may contain redundancies.
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The second method, based on partial cylindrical algebraic decomposition (cad) [2, 3],

has no degree restrictions. However, as parameters contribute fully to the complexity,

this method is preferable for problems with few variables. It produces very concise

output formulas.

The third method is based on real root counting [27, 6]. It is preferable in case a formula

has a simple Boolean structure and contains mainly equations.

Variants of the quantifier elimination procedures include extended quantifier elimina-

tion, which computes not only a quantifier-free equivalent but sample points, generic

and local quantifier elimination [12, 14].

Besides quantifier elimination there are several simplification techniques implemented.

They include a powerful standard simplifier for arbitrary formulas and a simplifier,

which automatically generates case distinctions. Furthermore, there are context-specific

improvements for Boolean normal form computation.

• acfsf: algebraically closed fields over the language of fields. This includes the complex

numbers C. Quantifier elimination based on comprehensive Gröbner bases, including

a generic variant, is provided in this context. All simplification methods and normal

form computations described for ofsf are also available for this context.

• dvfsf: discretely valued fields over a one sorted language with abstract divisibility.

This includes the p-adics. This context provides a linear quantifier elimination and an

adapted standard simplifier.

• pasf, a context for Presburger arithmetic, i.e. for computing with linear formulas over

the integers Z. This context is currently still in preparation.

• ibalp: initial Boolean algebras over the language of Boolean algebras. All members

of this class are isomorphic to the two-element Boolean algebra. This context provides

propositional logic with quantification [19], and includes also quantifier elimination,

an adapted standard simplifier and context-specific improvements for Boolean normal

form computation.

We recall the observation made in the second part of the example in Section 2. There

we have seen, that not by simply applying quantifier elimination alone, but by combining

it with simplification and normal form computation techniques, we reached success. This

is an often underestimated issue: successful quantifier elimination strongly depends on

powerful simplification and normal form computation techniques.

Last but not least, next to the elaborate methods it should be mentioned that also

numerous tools on formulas and for constructing them are available. These tools include

for-loops to generate large conjunctions and disjunctions, syntactic substitution, dropping
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prenex quantifiers, universal and existential closure, multiplicity list of terms and atomic

formulas, list of free or bound variables and number of atomic formulas.

Even though algorithms may be fully or partly context-dependent, redlog provides a

uniform interface: the canonical procedure call is the same for all contexts. As for quantifier

elimination, some contexts implement several methods. In this case we decide heuristically,

which algorithms to use, depending on the input formula. In addition there are front-ends

for all methods available. Furthermore there are switches to turn features on or off, or to

decide between complementary strategies.

redlog differs significantly from theorem proving systems, which usually have uniform

algorithms, no knowledge about the language, and all properties of the structure given

explicitly by axioms. redlog’s algorithms, in contrast, depend fully or in part on the

special properties of the structures they were designed for. As an example, a theorem

proving system may derive the idempotent laws for Boolean algebras from given axioms

regarding the existence of identities, the distributive laws and the existence of complement.

redlog, however, when switched to the context ibalp, proves all of these laws without

needing further information. A link between the two approaches is given by constraint

logic programming [4, 24].

We refer the reader to the redlog user manual, which can be downloaded from the

redlog page1). On this page there is a link to remis, our online example database.

4 Applications Overview

In this section we give an overview of applications and examples of quantifier elimina-

tion, which lie within the scope of redlog.

The context ofsf is redlog’s oldest and most elaborate one, so it is not astonishing

that most applications use real quantifier elimination.

• The analysis of partial differential equations is one of the best studied application area.

This includes stability analysis [15] of pde’s and a method for deciding them to be

elliptic [20].

• Applications of quantifier elimination in control theory [1, 17] and in the analysis of

hybrid systems, in particular for the computation of the reachability space, are also

extensively studied [1, 17].

• Ioakimidies has applied redlog in the area of theoretical mechanics [16].

• Quantifier elimination and simplification methods of redlog can also be applied in the

area of Hopf bifurcations [18].

1)http://www.fmi.uni-passau.de/˜redlog
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• Motion planning for one or more robots in a time dependent environment was also

studied [29, 28, 13].

• Sturm suggested to use redlog for the design, analysis and diagnosis of electrical

networks [22].

• The first author has described in his doctoral dissertation how to solve scheduling

problems for the traditional dedicated machine model and for project networks by

applying the extended quantifier elimination of redlog [8].

• Problems in the area of geometry and computer aided design may be also solved by

quantifier elimination. [23, 21].

Quantifier elimination for the p-adics within the context dvfsf was used to implement

an algorithm for computing integer solutions of systems of congruence wrt. prime power

moduli.

Application examples in digital circuit design and testing of faulted circuits are given

by Sturm and the second author in [19] by using the newly available context ibalp.

The reduce package for computing comprehensive Gröbner bases uses the algebraically

closed field context acfsf for simplifying and testing conditions on the parameters.

5 Computer Logic meets Computer Algebra

As seen in the second part of the example in Section 2 there might not necessarily be

a straightforward one-step solution of a problem. To find a solution, getting interactively

involved with the system is required. Such a course of action is greatly facilitated by

redlog’s seamless integration into a computer algebra system. There are further, less

obvious benefits from integrating a logic system to a computer algebra system than the

ease of use.

Consider the expression a2/a. A computer algebra system usually simplifies this to a. If

a is considered to be a transcendental element, the simplification is in fact valid. However,

if a is considered to be a variable, which can have arbitrary numbers from a domain as

values, this simplification is wrong, because division is a partial function and division by

a = 0 is not defined.

Guarded expressions [9] can deal with partially defined functions as well as piecewise

defined functions. The key idea is to assign to each partially defined expression a guard,

i.e. a quantifier-free first-order formula, which states under which conditions the expression

is valid. This idea generalizes to piecewise defined functions by considering sets of guarded

expressions. The functionality of redlog allows to efficiently deal with the guards, simpli-

fying them or testing them to be a contradiction or a tautology. Furthermore, this concept

allows to systematically simplify algebraic expressions by using logical knowledge of the
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expressions and its subexpressions. As an example, consider the possible simplification of

sign(x) · x − |x| to 0, as shown in the above-mentioned paper.

The application of guards is rewarding in particular for all parametric non-uniform com-

putations. For example, reduce uses this concept for computing comprehensive Gröbner

bases, i.e. the parametric variant of Gröbner bases. In this package guards are handled by

using redlog.

6 Conclusions

redlog is a package that extends the reduce computer algebra system to a computer

logic system. The integration of computer logic and computer algebra turns out to be of

mutual benefit. redlog’s domain is first-order logic, where a context, i.e. a language and

a class of structures over this language, is fixed. redlog provides efficiently implemented

quantifier elimination methods , offers powerful simplification and normal form computa-

tion techniques. It comes with numerous tools for constructing and processing formulas

and is easily available as part of the computer algebra system reduce. redlog has been

around now for 10 years and has been successfully used in various applications, including

theoretical mechanics, stability problems, control theory, design and analysis of electrical

networks and digital circuits, scheduling, geometrical theorem proving, computer aided

design, partial differential equations and real algebraic geometry.
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