
数式処理 J.JSSAC (2003)

Vol. 10, No. 1, pp. 13 - 22

特集 “Quantifier Elimination”

An Overview of QEPCAD B: a Tool for Real Quantifier

Elimination and Formula Simplification

Christopher W. Brown∗

United States Naval Academy

Abstract

This paper describes the basic functionality of Qepcad b, a system for computing with
semi-algebraic sets via Cylindrical Algebraic Decomposition (CAD). Qepcad b is an inter-
active command-line based program, written in C, and built on top of the Saclib library. It
extends and improves the Qepcad system. The article focuses on using Qepcad b to solve
problems, describing the basic facilities offered by the system and providing examples of ap-
plications of these facilities. The program is freely available at www.cs.usna.edu/~qepcad.

1 Introduction

Qepcad b1) is a system for computing with semi-algebraic sets. A semi-algebraic set is

a subset of Rn that can be defined as the set of points satisfying a boolean combination of

polynomial equalities and inequalities in the variables x1, . . . , xn. These defining formulas

for semi-algebraic sets are often called Tarski formulas. Many familiar geometric objects are

semi-algebraic sets — like discs (e.g. x2 +y2 < 1), polygons (e.g. a > 0∧b > 0∧a+b < 2),

ellipsoids (e.g. 2x2 + 5y2 + z2 = 1), semi-circles (e.g. a2 + b2 = 1 ∧ b > 0), etc. — as are

many important mathematical objects that we might not tend to think of geometrically —

like roots of polynomials, the set of parameter values for which solutions to a parameterized

polynomial system exist, minimal values of rational functions in polynomially constrained

regions, etc. The user describes semi-algebraic sets to Qepcad b by defining formulas,

and the system is able to then do a variety of things. The two most basic are:

• Formula Simplification — Qepcad b produces a simplified formula defining the same

set as defined by the input formula. For example, given input “ab ≤ 0 ∧ a + b =
∗wcbrown@usna.edu

1)Qepcad b extends and improves the Qepcad system [4], due primarily to Hoon Hong but with con-
tributions by many others. The author thanks Hoon Hong for permission to branch Qepcad b off from
Qepcad, and thanks all who contributed to Qepcad.
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0∧b2 +a2 > 0∨a2 = −b2” Qepcad b produces output “b+a = 0”, which is equivalent

over the reals.

• Quantifier Elimination — Qepcad b allows variables from the input formula to be

quantified, in which case it returns a formula defining the same set as that defined

by the quantified input formula, but which contains no quantifiers, and which only

contains the variables that appeared unquantified in the input. For example, given

input “∀x[x2 + ax + b = 0 =⇒ x > 1] assuming ab < −2” Qepcad b produces output

“a ≤ 0∧b+a+1 > 0”. Although it might not be obvious, the output is equivalent over

the reals to the input given the assumption ab < −2. The fact that for every Tarski

formula with quantifiers there is an equivalent Tarski formula without quantifiers was

proved by Tarski in the 1930’s when he gave an algorithm for performing quantifier

elimination.

The rest of this paper describes Qepcad b’s basic functionality of simplification and quan-

tifier elimination for Tarski formulas with two detailed examples, gives an overview of some

extensions of this basic functionality, and provides a brief comparison with other current

systems.

2 Simplification

Given an unquantified Tarski formula as input, Qepcad b returns a (hopefully!) sim-

pler formula that is equivalent over the reals. In a very simple case, we might give

Qepcad b the formula x ≤ 0 ∧ x2 > 0 and receive as output x < 0. The two formu-

las are equivalent over R, and the output is clearly simpler. This section provides a specific

example of how simplification helps solve problems, and ends with a discussion of why

simplification is important in general.

Trisector.eps

Figure 1: The external trisector of B with respect to A.

Consider the triangle ABC from Figure 1. We define the external trisector of B with

respect to A as the segment connecting vertex B with the intersection of the external
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trisector of B and the ray from A through C. Of course the external trisector of B with

respect to A does not always exist, and the problem we consider is to characterize in terms

of the side lengths a, b and c the triangles for which it does exist.2) We can do this quite

nicely with formula simplification.

It is clear from the picture that the external trisector of B with respect to A exists if

and only if (π − φ)/3 < θ. However, we’d like a characterization in terms of side lengths

not angles. We derive an equivalent statement to (π−φ)/3 < θ in terms of a, b and c using

little more than the law of cosines:

Case 1: Assuming θ ≤ π/3 we derive the following:

π − φ < 3θ, note that both sides are in [0, π]
− cos (π − φ) < − cos (3θ)

cos φ < − cos (3θ)
cos φ < −4 cos3 θ + 3 cos θ

a2+c2−b2

2ac < −4
(

a2+b2−c2

2ab

)3

+ 3
(

a2+b2−c2

2ab

)
a2b3

(
a2 + c2 − b2

)
< −c

(
a2 + b2 − c2

)3 + 3a2b2c
(
a2 + b2 − c2

)
Case 2: Assuming θ > π/3 we see immediately that π − φ < 3θ holds.

We are in Case 1 exactly when

θ ≤ π/3, note that both sides are in [0, π]
cos θ ≥ cos π

3
a2+b2−c2

2ab ≥ 1
2

a2 + b2 − c2 ≥ ab,

and so are in Case 2 when a2 + b2 − c2 < ab. Putting it all together, the external trisector
of B with respect to A exists if and only if the side lengths a, b, c satisfy

a2 + b2 − c2 ≥ ab
| {z }

Case 1

∧ a2b3
`

a2 + c2 − b2
´

< −c
`

a2 + b2 − c2
´3

+ 3a2b2c
`

a2 + b2 − c2
´

| {z }

Derived condition for Case 1

∨ a2 + b2 − c2 < ab
| {z }

Case 2

This formula is a characterization of the existence of the external trisector in terms of

the side lengths, but not a very nice characterization. Figure 2 shows a Qepcad b session

simplifying it. Notice that we must explicitly declare the assumption that a, b and c

are actually side lengths of a non-degenerate triangle, i.e. that all three are positive and

satisfy the triangle inequalities. These assumptions are implicit in the law of cosines. The

resulting characterization, c2 + bc − a2 > 0, is quite a bit simpler, gives more insight, and

provides better input for further computation.

The preceding example demonstrates simplification and gives some insight as to how

simplification problems arise. However, it doesn’t demonstrate one of the most important

2)This question arose from work with George Nakos.
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qesession.eps

Figure 2: Qepcad b simplification session.

sources of simplification problems: other algorithms! Other methods for computing with

semi-algebraic sets systematically produce large redundant formulas. The Redlog system

[5], for example, employs the method of quantifier elimination by virtual substitution [10],

which is essentially a rewrite rule. Each time this rule is applied to a formula, the size of the

formula grows. Thus, a very large formula is the expected result, even if the set defined by

that formula is expected to be quite simple. The restricted quantifier elimination algorithm

described in [6], has the same property. Instead of using a rewrite rule, it enumerates for

various sets of polynomials all sign-sequences having certain properties. Many of these

sign-sequences may not be realizable by the given set of polynomials, or it may be that

many sign-sequences can be merged to form an equivalent sign-sequence condition on a

smaller set of polynomials. In any event, large output is produced systematically. Other

algorithms have the same behaviour. Simplification is an important postprocessing step

when such methods are employed.3)

3)The program Slfq (www.cs.usna.edu/~qepcad/SLFQ) employs Qepcad b as a black box in a divide-
and-conquer approach to simplifying very large formulas ([1] describes the process and gives an example).
For formulas in two variables, the system has proved quite successful. It is able to reduce formulas
containing many thousands of inequalities to equivalents that can be written down in a line or two. With
more variables, time and space requirements are often prohibitive.
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3 Quantifier Elimination

A Tarski formula with quantified variables is, in a sense, a question. For example,

∃x[x2+bx+c = 0] is the question “when does x2+bx+c have a real root?” The well-known

answer “when b2 − 4c ≥ 0” is an equivalent formula from which the quantified variable

has been eliminated. Thus, quantifier elimination algorithms can be seen as providing

“answers” to “questions” about semi-algebraic sets.

Many problems from a wide variety of fields in mathematics, science and engineering

can be phrased as quantifier elimination problems. However, current quantifier elimination

algorithms are not able to deal with large problems in general. In fact, the problem is

fundamentally doubly exponential in the number of variables in the worst case, so this

limitation is not surprising. None the less, many problems of “moderate” size can be

solved within reasonable space and time constraints. The example problem considered

here is sort of a “toy” problem, but it is a nice demonstration of solving problems with

quantifier elimination. The following is from the last Putnam Exam:

Let C1 and C2 be circles whose centers are 10 units apart and whose radii are

1 and 3. Find, with proof, the locus of all points M for which there exist points X

on C1 and Y on C2 such that M is the midpoint of the line segment XY .

Letting X = (x1, y1) and Y = (x2, y2), the locus to be computed can be defined as the

points M = (x, y) satisfying the following quantified formula:

∃x1∃y1∃x2∃y2[

X on C1︷ ︸︸ ︷
x2

1 + y2
1 = 1 ∧ (x2 − 10)2 + y2

2 = 9︸ ︷︷ ︸
Y on C2

∧
M is the midpoint of XY︷ ︸︸ ︷

2x = x1 + x2 ∧ 2y = y1 + y2 ]

Thus, this problem can be solved by quantifier elimination. Qepcad b is particularly

sensitive to the number of variables in a problem, and this 6-variable phrasing of the

problem cannot be solved by it in a reasonable amount of time and space. However, since

x2 = 2x−x1 and y2 = 2y− y1, we can eliminate x2 and y2 by substitution, arriving at the

4-variable quantifier elimination problem

∃x1∃y1[ x2
1 + y2

1 = 1 ∧ (2x − x1 − 10)2 + (2y − y1)2 = 9]

which Qepcad b solves quite easily, as shown in Figure 3. The solution is seen to be the

region outside of one circle and inside another. Putting the inequalities in the general form

for circles yields y2 +(x−5)2 ≥ 12∧y2 +(x−5)2 ≤ 22, from which we see that the solution

is in fact an annulus of inner radius 1 and outer radius 2, centered at (5, 0).

Many problems more serious than Putnam Exam questions can be phrased as quantifier

elimination problems, of course4). However, this example demonstrates two key points.
4)The August 1997 issue of the Journal of Symbolic Computation (vol. 24, no. 2), a ”Special Issue on

Applications of Quantifier Elimination”, has several examples.
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pqesession.eps

Figure 3: Qepcad b quantifier elimination session.

First of all, that quantifier elimination problems naturally arise when one asks questions

about objects defined by polynomials. Secondly, Qepcad b is not intended to be a true

black box tool. One has to understand a little bit about how it works to use it effectively. It

does not try to preprocess an input formula to remove variables by, for example, the obvious

substitution we made for the Putnam problem. Given a formula like ∃y[F (x, y)∨G(x, y)],

Qepcad b does not return the “or” of the two smaller quantifier elimination problems

∃y[F (x, y)] and ∃y[G(x, y)], even though this is almost always the most efficient way to

proceed. Instead, Qepcad b always constructs a Cylindrical Algebraic Decomposition

directly from its input formula, and uses this to perform quantifier elimination. It is thus

up to the user to phrase his problem as an input formula (or a combination of input

formulas) that is best suited for Qepcad b. A preprocessor that would do such a thing

automatically would be a good tool.

4 Cylindrical Algebraic Decomposition

To use Qepcad b effectively, one must understand a bit about the theory of Cylindrical

Algebraic Decomposition5) on which it is based. A Cylindrical Algebraic Decomposition

(CAD) is essentially a data-structure for explicitly representing semi-algebraic sets. A

CAD contains a great deal of information about the set it represents. One can, for ex-

ample, immediately read off the dimension of the set, whether it is empty or the entire

space, the number of points in the set (if it is finite), and many other important things.

Moreover projection, which is the essence of quantifier elimination, is trivial in the CAD

5)CAD was invented by George Collins [3] in the early 1970’s as the basis for his quantifier elimination
algorithm. The outline of quantifier elimination by CAD given here is different than his original algorithm,
following the algorithm given in [4] instead.
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representation, and there is a straightforward and fast algorithm for computing a minimal

representation of a set as a CAD, in decided contrast to the Tarski formula representation!

Input formula:
Q1x1 · · ·Qrxr[F ]

Step 1−→
D, a CAD of
Rk+r repre-
senting the set
defined by F

Step 2−→
D, a CAD of Rk rep-
resenting the set de-
fined by the input
formula

Step 3−→
A Tarski formula
defining the set
represented by D

Figure 4: The process of quantifier elimination by CAD on input Q1x1 · · ·Qrxr[F ], where
the Qi’s are quantifiers, and F is a Tarski formula in the variables s1, . . . , sk, x1, . . . , xr.

Conceptually, quantifier elimination by CAD is the three step process shown in Figure 4.

Step 1 is the most time-consuming, being doubly exponential in k + r, the number of

variables. Therefore, phrasing problems with as few variables as possible is crucial for

using Qepcad b successfully. Step 1 is polynomial in other parameters measuring input

size — coefficient size, degrees of polynomials, number of polynomials — but in practice it

is important to keep these down as well. Step 2 is computationally trivial, which is one of

the key properties of CAD. Step 3 is, in a sense, the most important, because the ability

to produce simple Tarski formulas is unique to CAD-based methods. [7] reduces Step 3

to the well-known combinatorial problem of boolean formula minimization when the CAD

D has the special property of projection definability. When D is not projection definable,

Qepcad b adds an extra step before Step 3 to make D projection definable. The extra

time and space required for this varies widely in practice, and it is impossible to predict in

advance whether the extra step will even be needed.

5 Extensions

Qepcad b includes several extensions to the basic functionality of formula simplifica-

tion and quantifier elimination that allow the user to use the CAD data structure more

efficiently than is possible by using it simply as a black box for these two basic operations.

Two extensions are described in this section. The first addresses the sensitivity of Step 1

to the number of variables, and the second addresses the issue of projection definability in

Step 3.

In addition to “∃” and “∀”, Qepcad b can eliminate several other “quantifiers” just as

efficiently (or even more efficiently). One example is the “there exists exactly k” quantifier,

which we will denote ∃k. When this quantifier is applicable, problems can be phrased in

fewer variables, which can dramatically affect the cost of Step 1. For example, to determine

whether a formula F (x, y) defines y as a function of x in the interval −1 < x < 1 using

standard quantifier elimination, we would write ∃y∀y′[F (x, y) ∧ [F (x, y′) =⇒ y = y′]],

assuming −1 < x < 1, which requires three variables. Using the “∃k” quantifier, this can
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be written in only two variables as ∃1y[F (x, y)], assuming −1 < x < 1. As written, neither

of these formulas return a true/false answer to the original question — rather they return a

formula in x. However, if the quantified formula is satisfied for every x satisfying the stated

assumption, Qepcad b is guaranteed to return true as its output formula. So the answer

to the original question is true if Qepcad b returns true, and false otherwise. Qepcad b

handles several other “quantifiers”, including “there exist infinitely many” and “for all but

finitely many”. Both of these also allow a problem to be expressed in fewer variables than

is possible with only ∃ and ∀, but they are also interesting because Qepcad b can often

eliminate theses quantifiers more efficiently than it can ∃ and ∀. Thus, when problems can

be phrased with these quantifiers it is usually worthwhile to do so.

Qepcad b is able to both read input and write output in an extended language that

adds to the usual language of Tarski formulas the ability to refer to a root of a polynomial

by its index. This allows some sets to be defined with fewer polynomials, which is important

for the efficiency of Step 1. More importantly, all CADs are “projection definable” in this

extended language, so that the extra step before Step 3 is never needed. This is especially

important for combining results of different quantifier elimination problems. The extended

language adds a new type of atomic formula, which has the form xi σ rootkf(x1, . . . , xi)

where σ ∈ {=, 6=, <,>,≤,≥} and k is a nonzero integer. This formula is satisfied at

(α1, . . . , αi) if f(αi, . . . , αi−1, xi) has at least |k| roots and if αi has relation σ with the

|k|th of them, ordered least to greatest if k is positive and greatest to least if k is negative.

If, for example, Qepcad b is given input ∃y[x2 + y2 = 1 ∧ x + y < 0] it produces output

x + 1 ≥ 0 ∧ x < root−12x2 − 1 in the extended language, while in the language of Tarski

formulas it gives x + 1 ≥ 0 ∧ [2x2 − 1 < 0 ∨ x ≤ 0]. This second computation requires

the extra step to make D projection definable, and an extra polynomial is needed in the

formula.

6 Other Software

The Redlog system, which is distributed with Reduce, also provides facilities for quan-

tifier elimination and formula simplification. Its quantifier elimination is based on virtual

term substitution and its simplification is based on a variety of strategies, but CAD is not

a part of either. To the best of the author’s knowledge there is no other system that offers

both facilities for any significant subset of the Tarski formulas. Redlog has restrictions

on the degree of the polynomials from the input formula in the quantified variables. For

formulas that meet these degree restrictions it is often significantly faster than Qepcad b,

particularly when there are many free variables. Redlog’s simplification is much faster

than Qepcad b’s, but much less successful at actually simplifying. It is primarily aimed at

quickly simplifying formulas arising as intermediate results during Redlog’s quantifier elim-
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ination computations. Redlog and Qepcad b actually complement one another quite well.

For example, results of quantifier elimination by Redlog can be simplified by Qepcad b

to provide results that neither program could produce on its own.

There are several implementations of CAD and of quantifier elimination by CAD. Math-

ematica has an implementation [9], an implementation is being developed as part of Redlog

[8], and there is, of course, the Qepcad system [4] on which Qepcad b is based. None

of these is able to do formula simplification. Mathematica is the only one of the three to

provide something similar to Qepcad b’s extended language, however, it does not provide

Tarski formula equivalents to formulas in this extended language. Qepcad b’s extended

quantifiers are, to the best of the author’s knowledge, unique to Qepcad b.
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