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Abstract

A combinatorial object called K-hives realizes the crystal basis of an irreducible highest
weight module over the quantized enveloping algebra of type A. In this paper, we give
a set of algorithms to compute the crystal structure on K-hives. By implementing these
algorithms, we created a new package called khive-crystal in Python, which incorporates
all the functions needed to realize crystal structures. We give some examples of performing
this package.
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1 Introduction
For a symmetrizable Kac-Moody algebra g, the quantized enveloping algebra Uq(g) is deter-
mined with an indeterminate q, see [2, 4]. Certain modules over Uq(g) have crystal bases, which
can be viewed as its basis at q = 0, and it enables us to understand the representation theory
of Uq(g) from combinatorics. For example, the irreducible highest weight modules over the
quantized enveloping algebra of a simple Lie algebra have a crystal basis and are realized by
Young tableaux [7]. Then the action of Uq(g) on the highest weight modules can be computed
by Young tableaux combinatorics. It also means that other problems in representation theory,
such as the tensor product decomposition, can be approached by the combinatorics.

In a previous study, we gave a crystal structure on a set of K-hives and showed that the crystal
of K-hives is isomorphic to the crystal basis of an irreducible highest weight module over a quan-
tized enveloping algebra of type A. K-hive is a labeling of vertices of an equilateral triangular
graph introduced in [8, 12, 11]. K-hives have correspondence with semistandard Young tableaux
or Gelfand-Tsetlin patterns, and then, for example, they can be applied to compute (Stretched)
Kostka coefficients. Also, there is another special kind of hive called LR-hives, which corre-
sponds to Littlewood-Richardson tableaux and has application to Littlewood-Richardson coeffi-
cients. For example, in [16], the symmetry of the Littlewood-Richardson coefficients is proved
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by LR-hives. Therefore, hives give a new perspective on problem solving in combinatorial
representation theory.

In this paper, we give a set of algorithms for computing the crystal structure given in [14]
on K-hives, and some examples of executing these algorithms using the first author’s original
system. The system is implemented as a Python package named khive-crystal. The source code
is available in [13].

This paper is organized as follows. In Section 2, we review basic notions and notations of
quantized enveloping algebras, crystals, and K-hives. In Section 3, we give a set of algorithms
for the crystal structure on a set of K-hives using two approaches. One approach can be obtained
by considering a set of K-hives determined by a dominant weight as a subset of a tensor product
of sets of K-hives determined by fundamental weights. The other approach is based on an
combinatorial description of the crystal structure on K-hives. In Section 5, we give concluding
remarks.

2 Preliminaries

2.1 Quantized Enveloping Algebras
In this subsection, we review the definition of quantized enveloping algebras of type A, see [3]
for more details.

Let sln be the Lie algebra of type An−1 overCwith Cartan subalgebra h consisting of traceless
diagonal matrices. Let I = {1, 2, . . . , n−1} be an index set. Let A = (ai j)i, j∈I be the Cartan matrix
of type An−1. For i ∈ I, define the liner map ϵi : h → C by ϵi(h) = λi, where h = diag(λ j | j ∈
I) ∈ h. For i ∈ I, set αi = ϵi − ϵi+1. Let Π = {αi}i∈I ⊂ h∗ be simple roots and Π∨ = {hi}i∈I ⊂ h
be simple coroots. Let ∆ be the root system of sln. Set ∆+ = ∆ ∩∑i∈I Z≥0αi and ∆− = ∆ − ∆+.
For all i ∈ I, let Λi = ϵ1 + ϵ2 + · · · + ϵi ∈ h∗ be an i-th fundamental weight. Set P =

⊕
i∈I ZΛi,

P+ =
⊕

i∈I Z≥0Λi, and P∨ =
⊕

i∈I Zhi. We call P the weight lattice, P+ the set of dominant
integral weights, and P∨ the dual weight lattice, respectively. Using this notation, the Cartan
datum for sln is defined as (A,Π,Π∨, P, P∨).

Let q be an indeterminate. Let Uq(sln) be the quantized enveloping algebra overQ(q) associ-
ated with the Cartan datum (A,Π,Π∨, P, P∨). Let V(λ) be the irreducible highest weight module
of weight λ ∈ P+ with the highest weight vector vλ over Uq(sln).

2.2 Crystals
In this subsection, we review the notion of crystals, see [3, 5, 6] for more details.

Definition 1
A crystal associated with Cartan datum (A,Π,Π∨, P, P∨) is a set B together with the maps
wt : B → P, ei, fi : B → B ∪ {0}, and εi, φi : B → Z ∪ {−∞} (i ∈ I) satisfying the following
properties.

1. φi(b) = εi(b) + wt(b)(hi) for i ∈ I,

2. wt(eib) = wt(b) + αi if eib ∈ B,

3. wt( fib) = wt(b) − αi if eib ∈ B,

4. εi(eib) = εi(b) − 1, φi(eib) = φi(b) + 1 if eib ∈ B,

5. εi( fib) = εi(b) + 1, φi( fib) = φi(b) − 1 if fib ∈ B,
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6. fib = b′ if and only if b = eib′ for b, b′ ∈ B, i ∈ I,

7. if φi(b) = −∞, then eib = fib = 0.

Since (A,Π,Π∨, P, P∨) is the Cartan datum of type An−1, a crystal associated with (A,Π,Π∨, P, P∨)
is also called a Uq(sln)-crystal.

A Uq(sln)-crystal can be thought of as a colored-oriented graph in the following manner.

Definition 2
Let B be a Uq(sln)-crystal. A crystal graph of B is an I-colored oriented graph whose vertices

are elements of B and the arrows are written as b
i−→ b′ when fib = b′ for i ∈ I and b, b′ ∈ B.

The tensor product of crystals is defined as follows.

Definition 3
Let B1 and B2 be crystals. The tensor product B1 ⊗ B2 of B1 and B2 is defined to be the set
B1 × B2 whose crystal structure is defined by

1. wt(b1 ⊗ b2) = wt(b1) + wt(b2),

2. εi(b1 ⊗ b2) = max(εi(b1), εi(b2) − wt(b1)(hi)),

3. φ(b1 ⊗ b2) = max(φ(b2), φ(b1) + wt(b2)(hi)),

4. ei(b1 ⊗ b2) =

eib1 ⊗ b2 φi(b1) ≥ εi(b2),
b1 ⊗ eib2 φi(b1) < εi(b2),

5. fi(b1 ⊗ b2) =

 fib1 ⊗ b2 φi(b1) > εi(b2),
b1 ⊗ fib2 φi(b1) ≤ εi(b2).

In general, we have the following proposition([7, Proposition 2.1.1]).

Proposition 4
For j ∈ {1, . . . ,N}, let B j be a Uq(sln)-crystal. Fix i ∈ I. Take b j ∈ B j ( j = 1, . . . ,N), and we set

ak =
∑

1≤ j<k

(
φi(b j) − εi(b j+1)

)
1 ≤ k ≤ N.

In particular, we set a1 = 0. Then we have

1. εi(b1 ⊗ · · · ⊗ bN) = max
{∑

1≤ j≤k εi(b j) −
∑

1≤ j<k φi(b j) | 1 ≤ k ≤ N
}
,

2. φi(b1 ⊗ · · · ⊗ bN) = max
{
φi(bN) +

∑
k≤ j<N

(
φi(b j) − εi(b j+1)

)
| 1 ≤ k ≤ N

}
,

3. If k is the largest element such that ak = min{a j | 1 ≤ j ≤ N} then, we have

fi(b1 ⊗ · · · ⊗ bN) = b1 ⊗ · · · ⊗ bk−1 ⊗ fibk ⊗ bk+1 ⊗ · · · ⊗ bN ,

4. If k is the smallest element such that ak = min{a j | 1 ≤ j ≤ N} then, we have

ei(b1 ⊗ · · · ⊗ bN) = b1 ⊗ · · · ⊗ bk−1 ⊗ eibk ⊗ bk+1 ⊗ · · · ⊗ bN .

An isomorphism of crystals is defined as a bijection preserving crystal structure. Later we
will also construct a crystal embedding as defined in the following.
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Definition 5
Let B1, B2 be Uq(sln)-crystals. A crystal morphismΨ : B1 → B2 is a mapΨ : B1∪{0} → B2∪{0}
satisfying

1. wt(Ψ(b)) = wt(b), εi(Ψ(b)) = εi(b), φi(Ψ(b)) = φi(b) if b ∈ B1,Ψ(b) ∈ B2,

2. fiΨ(b) = Ψ( fib), eiΨ(b) = Ψ(eib) if Ψ(b),Ψ(eib),Ψ( fib) ∈ B2 for b ∈ B1,

3. Ψ(0) = 0.

A morphism Ψ : B1 → B2 is called an embedding if Ψ induces an injection B1 ∪ {0} → B2 ∪ {0}.
A morphism Ψ : B1 → B2 is called an isomorphism if Ψ induces a bijection B1∪{0} → B2∪{0}.
We write B1 � B2 if there exists an isomorphism Ψ : B1 → B2.

2.3 K-hives
Hives are introduced by T.Tao and A.Knutson [12, 11] as the labeling of the vertices of an
equilateral triangular graph. There are three forms of hives, one of which, the upright gradient
representation, is used in this paper. See [16] for more details. In this paper, we use K-hives,
which are a special kind of hives [8].

Let n ∈ Z≥0 and λ = (λ1, λ2, . . . , λn) ∈ Zn
≥0. λ is called a composition of m ∈ Z≥0 if

λ1 + · · · + λn = m. A composition λ is called a partition of m if λ1 ≥ · · · ≥ λn ≥ 0. If λ is a
partition of m such that λi = k for 1 ≤ i ≤ l ≤ n and λi = 0 for l < i ≤ n, then we write λ as (km).
In particular, we simply write (0n) as 0 if there is no fear of confusion. In addition, ℓ(λ) denotes
the length of λ.

For λ ∈ P+, there exists a partition λ̃ such that λ̃1ϵ1 + λ̃2ϵ2 + · · · + λ̃nϵn = λ. Similarly, for
µ ∈ P, there exists a composition µ̃ such that µ̃1ϵ1+µ̃2ϵ2+· · ·+µ̃nϵn = µ. Note that a composition
(µ̃1 + k, . . . , µ̃n + k) also represents µ ∈ P since ϵ1 + · · · + ϵn = 0.

Let ξ ∈ P be a weight of V(λ). Then ξ is written as λ − ∑i∈I kiαi ∈ P (ki ∈ Z). For ξ, there
exists a composition ξ̃ such that ξ̃1ϵ1 + ξ̃2ϵ2 + · · · + ξ̃nϵn = ξ and

∑n
k=1 ξ̃k =

∑n
k=1 λ̃k.

In the following, a partition (resp. composition) λ̃ representing a dominant weight (resp. an
integral weight) λ is also denoted by λ by abuse of notation.

Definition 6
Let α = (α1, . . . , αn), β = (β1, . . . , βn), γ = (γ1, . . . , γn) ∈ Zn. Let (Ui j)1≤i< j≤n ∈ Zn(n−1)/2. An
integerhive of size n in upright gradient representation ([16]) is a tuple (α, β, γ, (Ui j)1≤i< j≤n) that
satisfies

βk = (γk +

k−1∑
i=1

Uik) + (αk −
n∑

j=k+1

Uk j). (1)

Remark 7
In [12, 11, 16], the term hive refers to a hive with additional inequality conditions called the
rhombus inequalities. We rather follow the terminology of [8, 9, 10].

An integer hive in upright gradient representation is illustrated as the labeling of an equilat-
eral triangular graph with boundary edge labels and rhombi as shown in Fig. 1.

Set [n] = {1, 2, . . . , n}. In the following, for i ∈ [n], set

Uii = βi −
i−1∑
k=1

Uki (2)
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Fig. 1: Integer hive graph of size 4

and Ui j = 0 if i > j or j > n or i < 1. Also, for simplicity, we will write (Ui j)1≤i< j≤n as (Ui j)i< j.
In this paper, we consider a kind of integer hive called a K-hive.

Definition 8
Let m, n ∈ Z≥0. Let α, β, γ ∈ Zn

≥0. For 1 ≤ i < j ≤ n, set Li j =
∑ j−1

k=1 Uik −
∑ j

k=1 Ui+1,k. Then
an integer hive in upright gradient representation H = (α, β, γ, (Ui j)i< j) is called a K-hive if the
following conditions are satisfied

1. α is a partition of m,

2. β is a composition of m,

3. γ = (0n),

4. Ui j ≥ 0 for 1 ≤ i < j ≤ n,

5. Li j ≥ 0 for 1 ≤ i < j ≤ n,

6. βi ≥
∑i−1

k=1 Uki for i ∈ [n].

Let

H (n)(α, β, 0) = {H = (α, β, 0, (Ui j)i< j) | H is a K-hive}.

Set

H(α) =
∪
β

H (n)(α, β, 0)

where the union runs through all compositions of m.

Remark 9
For H = (α, β, 0, (Ui j)i< j) ∈ H (n)(α, β, 0), we have

n∑
k=1

βk =

n∑
k=1

(
k−1∑
i=1

Uik + αk −
n∑

j=k+1

Uk j)

=

n∑
k=1

αk.

Thus, if
∑n

i=1 αi ,
∑n

i=1 βi, we haveH (n)(α, β, 0) = ∅.
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Remark 10
Let α = (α1, α2, . . . , αn) be a partition of m ∈ Z≥0. Let l ∈ Z≥0. Set α′ = (αi + l)i. We
know that α and α′ represent the same dominant weight. We also have that H(α) � H(α′) as
a set. The bijection from H(α) to H(α′) is given by the map which maps (α, β, 0, (Ui j)i< j) to
(α′, β′, 0, (U′i j)i< j), where β′ = (βi + l)i and (Vi j)i< j = (Ui j)i< j. Note that Vii = Uii + l holds for
i = 1, 2, . . . , n − 1.

Remark 11
Let H ∈ H (n)(α, β, 0) ⊂ H(α). In this case, we have Uii = αi −

∑n
j=i+1 Ui j by Definition 6 (1)(2).

Also, we have Ui j = 0 for j ∈ [n] if αi = 0 since Ukl ≥ 0 for 1 ≤ k ≤ l ≤ n.

Example 12
Let n = 4, λ = (3, 2, 1, 0) and µ = (2, 3, 1, 0). We have an example of H ∈ H (4)(λ, µ, 0) ⊂ H(λ)
as shown in Fig. 2.

Fig. 2: An example of a K-hive

Remark 13
Let λ ∈ P+ and let H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ). Let T be a Young tableau of shape λ, weight
µ, and let Ui j be the number of j in i-th row of T . Then, the map that sends H to T is a bijection
from H(λ) to the set of semistandard tableaux of shape λ (cf. [9]).

2.4 Crystal Structure on K-hives
In this subsection, we review the crystal structure on H(λ) for λ ∈ P+ according to [14]. There
are two ways to introduce the crystal structure on H(λ). One way is realized by regarding
H(λ) as a subset of a tensor product of crystals of the form H(Λk). Another way is realized by
considering a combinatorial description of the crystal structure.

The following is a technical lemma.

Lemma 14 ([14])
Let ν ∈ I and H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν).

1. For all i ∈ {1, 2, . . . , ν}, there exists a unique j ∈ {i, i + 1, . . . , n} such that Ui j = 1.

2. Fix j ∈ I. If there exists i, i′ ∈ {1, 2, . . . , j} such that Ui j,Ui′ j > 0, then i = i′ holds.

We first define the crystal structure on H(Λk) for k ∈ I.
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Definition 15 ([14])
Let ν ∈ I. The maps wt : H(Λν) → P, ei, fi : H(Λν) → H(Λν) ∪ {0} and εi, φi : H(Λν) → Z≥0
(i ∈ I) are defined in the following manner. Let H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν).

1. wt(H) :=
∑n−1

k=1(µk − µk+1)Λk ∈ P,

2. εi(H) := max(µi+1 − µi, 0),

3. φi(H) := max(µi − µi+1, 0),

4. Set µ′ =
∑n

k=1 µ
′
kϵk ∈ P where µ′i = µi + 1, µ′i+1 = µi+1 − 1, and µ′k = µk for k , i, i + 1. Set

U′k0,i
= Uk0,i +1, U′k0,i+1 = Uk0,i+1 −1 if there exists k0 ∈ {1, 2, . . . , i+1} such that Uk0,i+1 > 0.

Set U′kl = Ukl if k , k0 and l , i, i + 1. Then, for i ∈ I, ei : H(Λν) → H(Λν) ∪ {0} is defined
as follows:

eiH =

(Λν, µ′, 0, (U′kl)k<l) εi(H) > 0,
0 εi(H) = 0,

5. Set µ′ =
∑n

k=1 µ
′
kϵk ∈ P where µ′i = µi − 1, µ′i+1 = µi+1 + 1, and µ′k = µk for k , i, i + 1. Set

U′k0,i
= Uk0,i − 1, U′k0,i+1 = Uk0,i+1 + 1 if there exists k0 ∈ {1, 2, . . . , i} such that Uk0,i > 0. Set

U′kl = Ukl if k , k0 and l , i, i + 1. fi : H(Λν)→ H(Λν) ∪ {0}(i ∈ I) is defined as follows:

fiH =

(Λν, µ′, 0, (U′kl)k<l) φi(H) > 0,
0 φi(H) = 0.

Remark 16 ([14])
It follows from Definition 6 (1) that µi ∈ {0, 1} for all i ∈ [n] since Λν corresponds to (1k). Thus,
we have φi(H), εi(H) ∈ {0, 1}. Moreover, the following holds.

φi(H) =

1 fiH , 0,
0 fiH = 0.

εi(H) =

1 eiH , 0,
0 eiH = 0.

Proposition 17 ([14])
Let ν ∈ I. Then H(Λν) is a Uq(sln)-crystal together with the maps wt, ei, fi, φi, εi in Definition
15.

By the map Ψ defined in the following, we regard H(λ) as a subset of a tensor product of
crystals of the form H(Λk). Then, to define Ψ, we first define a map Ψλ.

Definition 18 ([14])
Let λ =

∑
i∈I miΛi ∈ P+. Set N =

∑
i∈I mi. Let lN = max{i ∈ I | mi , 0}. For H =

(λ, µ, 0, (Ui j)i< j) ∈ H(λ), HN = (ΛlN , µ
(N), 0, (U(N)

i j )i< j) is defined by

U(N)
i j =

1 if j = min{ j ∈ [n] | Ui j > 0},
0 otherwise,

µ(N)
k =

1 if there exists j ∈ [n] such that U(N)
k j > 0,

0 otherwise
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For H and HN , H(N−1) = (λ(N−1), ξ(N−1), 0, (V (N−1)
i j )i< j) is defined by λ(N−1) = λ − ΛlN , ξ(N−1) =

µ − µ(N), and V (N−1)
i j = Ui j − U(N)

i j (1 ≤ i < j ≤ n).

Lemma 19 ([14])
Let λ =

∑
i∈I miΛi ∈ P+. Set N =

∑
i∈I mi. Let H ∈ H(λ). Let HN and H(N−1) in Definition 18.

Then, HN ∈ H(ΛlN ) and H(N−1) ∈ H(λ(N−1)) hold.

Definition 20 ([14])
Let λ =

∑
i∈I miΛi ∈ P+. Set N =

∑
i∈I mi. For each H ∈ H(λ), take HN ∈ H(ΛlN ) and

H(N−1) ∈ H(λ(N−1)) as in Definition 18. Then define the map Ψλ : H(λ)→ H(λ(N−1))×H(ΛlN ) by
Ψλ(H) = H(N−1) × HN .

Lemma 21 ([14])
The map Ψλ is an injection.

By applying Ψλ repeatedly, we have an injection from H(λ) to
⊗

k H(Λk).

Proposition 22 ([14])
Let λ =

∑
i∈I miΛi ∈ P+. Then there exists an injection

Ψ : H(λ)→
⊗

i∈I
H(Λi)⊗mi .

To define the crystal structure on H(λ) for λ ∈ P+ so that Ψ is a crystal morphism, we need
to show that an image of Ψ is stable under the action of ei, fi (i ∈ I). To show this, we start by
examining an image of Ψ.

Lemma 23
Let λ =

∑
i∈I miΛi ∈ P+. Set N =

∑
i∈I mi. Let H ∈ H(λ). Let Ψ(H) = H1 ⊗ · · · ⊗ HN , where

Hk = (Λlk , µ
(k), 0, (U(k)

i j )i< j) (k = 1, . . . ,N). For k ∈ {1, . . . ,N} and i ∈ [n], if there exists j ∈ [n]

such that U(k)
i, j > 0, then set ji,k to its j, otherwise set ji,k to 0. Suppose that ji,k > 0 for some

k ∈ {1, . . . ,N} and i ∈ [n]. Then we have ji,k′ ≥ ji,k if k ≥ k′.

Proof Set H(N) = H and λ(N) = λ. By Definition 18, for m = 1, 2, . . . ,N there exists Hm ∈
H(Λlm ) and H(m−1) ∈ H(λ(m−1)) such that

Ψλ(m) (H(m)) = H(m−1) ⊗ Hm.

For m = 1, 2, . . . ,N, let H(m) = (λ(m), ξ(m), 0, (V (m)
i j )i< j). Fix k ∈ {1, 2, . . . ,N}. It follows from the

definition of Ψ and Ψλ (λ ∈ P+) that

V (k)
i j = U(1)

i j + · · · + U(k)
i j (1 ≤ i < j ≤ n).

Then, by the definition of Ψλ(k) ,

U(k)
i j =

1 j = min{ j ∈ [n] | V (k)
i j > 0},

0 else.

This means that for 1 ≤ k′ ≤ k ≤ N

ji,k = min{ j ∈ [n] | U(1)
i j + · · · + U(k)

i j > 0}

≤ min{ j ∈ [n] | U(1)
i j + · · · + U(k′)

i j > 0}
= ji,k′ .
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Remark 24
It follows from Lemma 23 that

ji,k = min{ j ∈ [n] | U(l)
i j > 0, l = 1, . . . , k}

= max{ j ∈ [n] | U(l)
i j > 0, l = k, . . . ,N}.

Proposition 25
Let λ =

∑
i∈I miΛi =

∑
i∈I λiϵi ∈ P+. Set N =

∑
i∈I mi. Then,

Ψ(H(λ)) = {H1 ⊗ · · · ⊗ HN ∈
N⊗

k=1

H(Λlk ) | ji,λN+1−i ≥ ji,λN+1−i+1 ≥ · · · ≥ ji,N for all i ∈ I}, (3)

where ji,k (i ∈ I, k ∈ {1, . . . ,N}) is defined in Lemma 23.

Proof Let λ =
∑

i∈I miΛi =
∑

i∈I λiϵi ∈ P+. Set F to the right set of (3).
First, we show Ψ(H(λ)) ⊂ F . Let H = H1 ⊗ · · · ⊗ HN ∈ Ψ(H(λ)), where Hk ∈ H(Λlk ) for

k = 1, 2, . . . ,N. We know λi = mi + mi+1 + · · · + mn−1 for i ∈ I. Then by the construction of Ψ,
ΛlλN+1−i

= ΛN+1−i. By Lemma 14, ji,λN+1−i > 0 holds. By Lemma 23, ji,λN+1−i ≥ ji,λN+1−i+1 ≥ · · · ≥
ji,N holds. Thus, H ∈ F holds.

Next, we showF ⊂ H(λ). Let H = H1⊗· · ·⊗HN ∈
⊗N

k=1 H(Λlk ), where Hk = (Λlk , µ
(k), 0, (U(k)

i j )i< j)
for k = 1, 2, . . . ,N. Let H̃ = (λ̃, µ̃, 0, (Ũi j)i< j), where λ̃ =

∑N
k=1Λlk , µ̃ =

∑N
k=1 µ

(k), and
Ũi j =

∑N
k=1 U(k)

i j (1 ≤ i < j ≤ n). Then we can check H̃ ∈ H(λ) as follows. For i ∈ I,

µ̃i =

N∑
k=1

µ(k)
i

=

N∑
k=1

 i−1∑
l=1

U(k)
li +

(Λlk )i −
n∑

l=i+1

U(k)
il




=

i−1∑
l=1

Ũ(k)
li +

λ̃(k)
i −

n∑
l=i+1

Ũ(k)
il

 .
Then H̃ is an integer hive. λ̃ ∈ P+, µ̃ ∈ P,

∑
i∈I λ̃i =

∑
i∈I µ̃i, and Ũi j ≥ 0 (1 ≤ i < j ≤ n)

immediately hold from the definition of H̃ and Hk ∈ H(Λlk ). For 1 ≤ i < j ≤ n,

L̃i j =

j−1∑
k=1

Ũik −
j∑

k=1

Ũi+1,k

=

j−1∑
k=1

N∑
l=1

U(l)
ik −

j∑
k=1

N∑
l=1

U(l)
i+1,k

=

N∑
l=1

L(l)
i j ≥ 0.

Also, for i ∈ I,

µ̃i −
i−1∑
k=1

Ũki =

N∑
l=1

µ(l)
i −

i−1∑
k=1

N∑
l=1

U(l)
ki

=

N∑
l=1

(µ(l)
i −

i−1∑
k=1

U(l)
ki ) ≥ 0.
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By the choice of H, λ̃ = λ. Then H̃ ∈ H(λ).
We may assumeΨ(H̃) = H̃1⊗· · ·⊗H̃N , where H̃k = (Λlk , µ̃

(k), 0, (Ũ(k)
i j )i< j) for k = 1, 2, . . . ,N.

We show H̃k = Hk for k = 1, . . . ,N by induction on k. Set H̃(N) = H̃ and λ(N) = λ. By
Definition 18, we know Ψλ(k) (H̃(k)) = H̃(k−1) ⊗ H̃k, where H̃(k) = (λ(k), µ̃(k), 0, (V (k)

i j )i< j) for k =
1, 2, . . . ,N. By Definition 18 and H ∈ F ,

Ũ(N)
i j =

1 if j = min{ j ∈ [n] | U(1)
i j + · · · + U(N)

i j > 0},
0 otherwise,

=

1 if j = ji,N ,
0 otherwise,

= U(N)
i j .

By Definition 18, µ̃(N) = µ(N), namely H̃N = HN holds. Assume that H̃s = Hs for s = k + 1, k +
2, . . . ,N. By Definition 18, H ∈ F , and the induction hypothesis,

Ũ(k)
i j =

1 if j = min{ j ∈ [n] | U(1)
i j + · · · + U(k)

i j > 0},
0 otherwise,

=

1 if j = ji,k,
0 otherwise,

= U(k)
i j .

By Definition 18, µ̃(k) = µ(k), namely H̃k = Hk holds. Thus, H ∈ Ψ(H(λ)).

Lemma 26
Let H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν). Suppose that there exists i0, j0, i1, j1 ∈ [n] such that
Ui0, j0 ,Ui1, j1 > 0. Then i1 > i0 if and only if j1 > j0.

Proof Let H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν). Suppose that there exists i0, j0, i1, j1 ∈ [n] such
that Ui0, j0 ,Ui1, j1 > 0.

Assume i1 > i0 and i1 = i0 + l for some l ∈ Z. By Lemma 14 and H ∈ H(Λν),

l−1∑
k=0

Li0+k, j0+k =

j0−1∑
k=1

Ui0,k −
j0+l−1∑

k=1

Ui0+l,k

= −
j0+l−1∑

k=1

Ui0+l,k ≥ 0.

Then, we have Ui1k = 0 for k = 1, 2, . . . , j0 + l − 1, especially Ui1k = 0 if k ≤ j0. Thus, j1 > j0
holds.

Assume j1 > j0. Suppose that i0 ≥ i1 and i0 = i1 + l for some l ∈ Z. By Lemma 14 and
H ∈ H(Λν),

l−1∑
k=0

Li1+k, j1+k =

j1−1∑
k=1

Ui1k −
j1+l−1∑

k=1

Ui1+l,k

= −
j1+l−1∑

k=1

Ui1+l,k ≥ 0
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Then, we have Ui0k = 0 for k = 1, 2, . . . , j1 + l− 1, especially Ui0k = 0 if k < j1, however, this is
a contradiction for j1 > j0. Thus, i1 > i0 holds.

Remark 27
For H ∈ H(λ) (λ ∈ P+), let Ψ(H) = H1 ⊗ · · · ⊗ HN , where Hk = (Λlk , µ

(k), 0, (U(k)
i j )i< j) ∈ H(Λk)

for k = 1, 2, . . . ,N. For i ∈ [n] and k ∈ {1, 2, . . . ,N}, let ji,k be as in Lemma 23. Then, for each
k = 1, 2, . . . ,N, we have

j1,k < j2,k < · · · < jlk ,k (4)

from Lemma 26.

Proposition 28
Let λ ∈ P. Ψ(H(λ)) ∪ {0} is stable under the action of ei and fi for i ∈ I.

Proof We show that fi(Ψ(H(λ)) ∪ {0}) ⊂ Ψ(H(λ)) ∪ {0}. Let H = H1 ⊗ · · · ⊗ HN ∈ Ψ(H(λ)),
where Hk = (Λlk , µ

(k), 0, (U(k)
i j )i< j). Assume fiH = H1 ⊗ · · · ⊗ fiHk0 ⊗ · · · ⊗ HN . If fiH = 0, the

statement is obvious.
Suppose fiH , 0. Let fiHk0 = (Λlk0

, µ̃(k0), 0, (Ũ(k0)
i j )i< j). For i ∈ I, if there exists j ∈ [n]

such that Ũ(k0)
i j > 0, then set j̃i,k0 to its j, otherwise set j̃i,k0 to 0. For Hk0 and i, let k0 in

Definition 15 (5) be written as k fiH . Then we know jk fi H ,k0 = i. By Definition 15, we have
j̃k fi H ,k0 = i + 1 and j̃k,k0 = jk,k0 if k , k fiH . By Proposition 25, to show that fiH ∈ Ψ(H),
it suffices to check that jk fi H ,k0−1 ≥ j̃k fi H ,k0 = i + 1. Note that we have jk fi H ,k0−1 ≥ jk fiH ,k0 = i
since H ∈ Ψ(H(λ)). It also follows that φi(Hk0−1) = 0 since φi(Hk0−1) − εi(Hk0 ) ≤ 0 holds from
Proposition 4.

Suppose jk fi H ,k0−1 = i. Then, µ(k0−1)
i = µ(k0−1)

i+1 = 1 follows from Remark 16 and φi(Hk0−1) = 0.
By Lemma 26, jk fi H+1,k0−1 = i+1 and jk fi H+1,k0 > i holds. Since fiH(k0) , 0, we know µ(k0)

i+1 = 0 by
Remark 16. Then, we have jk fi H+1,k0 > i+1 from (2). Now, we have jk fiH+1,k0−1 = i+1 < jk fi H+1,k0 ,
however this is a contradiction for H ∈ Ψ(H(λ)). Thus, jk fi H ,k0−1 ≥ i + 1 holds.

Similarly, ei(Ψ(H(λ)) ∪ {0}) ⊂ Ψ(H(λ)) ∪ {0} is can be shown.

Now, we define the crystal structure on H(λ) (λ ∈ P+) using an injection Ψ.

Definition 29 ([14])
Let λ =

∑
i∈I miΛi ∈ P+. The crystal structure on H(λ) is defined so that Ψ is a morphism of

crystals.

The crystal structure on H(λ) is isomorphic to the crystal basis of an irreducible highest
weight module of type An−1 as follows.

Definition 30 ([14])
Let λ ∈ P+. Then define Hλ ∈ H(λ) by Hλ = (λ, λ, 0, (0)i< j).

Remark 31 ([14])
Let λ ∈ P+. Let Hλ = (λ, λ, 0, (0)i< j) ∈ H(λ). For i = 1, 2, . . . , ℓ(λ), we have

Uii = λi −
i−1∑
k=1

Uki = λi > 0.

Lemma 32 ([14])
Let λ ∈ P+. Then Hλ is the highest weight element of weight λ in H(λ).
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Lemma 33 ([14])
Let λ =

∑
i∈I miΛi ∈ P+. Then we have

H(λ) =
{
fi1 . . . fik Hλ | k ≥ 0, i1, . . . , ik ∈ I

}
.

Therefore H(λ) is connected.

For λ ∈ P+, let B(λ) be the crystal basis of V(λ) with the highest weight vector bλ. For an
arbitrary λ ∈ P+, to show thatH(λ) is isomorphic to B(λ), we first show thatH(Λν) is isomorphic
to B(Λν) for ν ∈ I.

Proposition 34
Let H,H′ ∈ H(Λν). If wt(H) = wt(H′), then H = H′ holds.

Proof Let H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν). Set λ = Λν. For s = 1, 2, . . . , ν, there exists a
unique js ∈ [n] such that Us js = 1 by Lemma 14. By Lemma 14 and (2), µk = 1 if k = js for
some s = 1, 2, . . . , ν, otherwise µk = 0. By Lemma 26, we have j1 < j2 < · · · < jν. Thus,
(s, js) is uniquely determined by λ and µ. Therefore, if wt(H) = wt(H′), then H = H′ holds for
H,H′ ∈ H(Λν).

By the proof of Proposition 34, we have the following.

Corollary 35
Let H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν). For s = 1, 2, . . . , ν, let js ∈ [n] such that µ js = 1. Assume
j1 < j2 < · · · < jν. Then,

Ui j =

1 if (i, j) = (s, js),
0 otherwise.

Lemma 36
For H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν), set Ω(H) = (Λν, ξ, 0, (Vi j)i< j), where ξi = µn+1−i (i ∈ [n])
and Vi j = Uν+1−i,n+1− j (1 ≤ i < j ≤ n). Then, Ω(H) ∈ H(Λν).

Proof Set λ = Λν. For s = 1, 2, . . . , ν, we can take js ∈ [n] such that µ js = 1 since H ∈ H(Λν).
We may assume j1 < j2 < · · · < jν by retaking js if necessary. By Corollary 35,

Ui j =

1 if (i, j) = (s, js) for some s ∈ {1, 2, . . . , ν},
0 otherwise.

By the definition of Ω, ξk = 1 if k = n + 1 − js, otherwise ξk = 0. Also, we have

Vi j = Uν+1−i,n+1− j

=

1 if (i, j) = (ν + 1 − s, n + 1 − js),
0 otherwise.

Since ξ ∈ P and
∑n

i=1 ξi = ν, we can take H′ ∈ H(Λν) such that wt(H′) = ξ. By Corollary 35,
Ω(H) = H′ holds, and hence Ω(H) ∈ H(Λν) holds.

Definition 37
The map Ω : H(Λν) ∪ {0} → H(Λν) ∪ {0} is defined by H maps to Ω(H) for H ∈ H(Λν) and
Ω(0) = 0.
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Proposition 38
The map Ω : H(Λν) ∪ {0} → H(Λν) ∪ {0} is an involution.

Proof Let H ∈ H(Λν). By Definition 37, we have Ω(Ω(H)) = H. Also, we have Ω(0) = 0.
Then, Ω is a surjection. Let H,K ∈ H(Λν) ∪ {0}. Assume Ω(H) = Ω(K). By Definition 37, we
have H = Ω(Ω(H)) = Ω(Ω(K)) = K. Then Ω is an injection. Thus, Ω is a bijection, especially
Ω is an involution.

Proposition 39
Ω : H(Λν)→ H(Λν) has the following properties. For H ∈ H(Λν) and i ∈ I,

1. wt(Ω(H)) = w0wt(H),

2. φi(Ω(H)) = εn−i(H),

3. εi(Ω(H)) = φn−i(H),

4. fi(Ω(H)) = Ω(en−i(H)),

5. ei(Ω(H)) = Ω( fn−i(H)),

where w0 denotes the longest element in the Weyl group of type An−1.

Proof Let H = (Λν, µ, 0, (Ui j)i< j) ∈ H(Λν). Let w0 be the longest element in the Weyl group
of type An−1. By Definition 37, we have

wt(Ω(H)) =
n∑

k=1

µn+1−kϵk =

n∑
k=1

µkϵn+1−k

=

n∑
k=1

µkw0(ϵk) = w0wt(H),

hence (1) holds.
By Definition 37, we have

φi(Ω(H)) = max{µn+1−i − µn−i, 0}
= εn−1(H).

Then (2) holds. Also, we have

εi(Ω(H)) = max{µn−i − µn+1−i, 0}
= φn−1(H).

Then (3) holds.
From (2), (4) is obvious if fiΩ(H) = 0. Suppose fiΩ(H) , 0. Set ξ = wt( fiΩ(H)) and

o = wt(Ω(en−i(H))). By Definitions 15 and 37, for k = 1, 2, . . . , n,

ξk =


µn+1−k − 1 if k = i,
µn+1−k + 1 if k = i + 1,
µn+1−k otherwise

= ok.

By Proposition 34, (4) holds.
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From (3), (5) is obvious if eiΩ(H) = 0. Suppose eiΩ(H) , 0. Set ξ = wt(eiΩ(H)) and
o = wt(Ω( fn−i(H))). By Definitions 15 and 37, for k = 1, 2, . . . , n,

ξk =


µn+1−k + 1 if k = i,
µn+1−k − 1 if k = i + 1,
µn+1−k otherwise

= ok.

By Proposition 34, (5) holds.

Proposition 40
Let k ∈ I. There is an isomorphism from H(Λk) to B(Λk).

Proof Let k ∈ I. From [15][1, Theorem 4.13], it suffices to show that

1. If ei(H) = 0, then εi(H) = 0 for H ∈ H(Λk), i ∈ I,

2. If fi(H) = 0, then φi(H) = 0 for H ∈ H(Λk), i ∈ I,

3. When i, j ∈ I and i , j, if H,K ∈ H(Λk) and K = eiH, then ε j(K) equals ε j(H) or ε j(H)+ 1.
The second case where ε j(K) = ε j(H) + 1 is possible only if αi and α j are not orthogonal
roots,

4. When i, j ∈ I and i , j, if H,K ∈ H(Λk) and K = fiH, then φ j(K) equals φ j(H) or φ j(H)+1.
The second case where φ j(K) = φ j(H) + 1 is possible only if αi and α j are not orthogonal
roots,

5. Assume that i, j ∈ I and i , j. If H ∈ H(Λk) with εi(H) > 0 and ε j(eiH) = ε j(H) > 0, then
eie jH = e jeiH and φi(e jH) = φi(H),

6. Assume that i, j ∈ I and i , j. If H ∈ H(Λk) with φi(H) > 0 and φ j( fiH) = φ j(H) > 0, then
fi f jH = f j fiH and εi( f jH) = εi(H),

7. Assume that i, j ∈ I and i , j. If H ∈ H(Λk) with ε j(eiH) = ε j(H) + 1 > 1 and εi(e jH) =
εi(H) + 1 > 1, then eie2

jeiH = e je2
i e jH , 0, φi(e jH) = φi(e2

jeiH) and φ j(eiH) = φ j(e2
i e jH),

8. Assume that i, j ∈ I and i , j. If H ∈ H(Λk) with φ j( fiH) = φ j(H) + 1 > 1 and φi( f jH) =
φi(H) + 1 > 1, then fi f 2

j fiH = f j f 2
i f jH , 0, εi( f jH) = εi( f 2

j fiH) and ε j( fiH) = ε j( f 2
i f jH).

by Remark 16, Lemmas 33 and 32. By Remark 16, (1) and (2) hold. Also, again by Remark 16,
we know that there is no i ∈ I such that εi(H) > 1 (resp. φi(H) > 1), so (7) (resp. (8)) is true.

Let i, j ∈ I with i , j. Let H,K ∈ H(Λk). Assume K = eiH. By Definition 15, ε j(K) = ε j(H)
is obvious if j , i − 1, i + 1. Let H = (Λk, µ, 0, (Ui j)i< j) and K = (Λk, ξ, 0, (Vi j)i< j). We know
εi(H) = 1 from K , 0 and Remark 16, especially µi+1 = 1 and µi = 0. By Definition 15, if
µi−1 = 0, then εi−1(K) = εi−1(H) + 1, otherwise εi−1(K) = εi−1(H). Also, if µi+2 = 1, then
εi+1(K) = εi+1(H) + 1, otherwise εi+1(K) = εi+1(H). Then (3) holds.

Let i, j ∈ I with i , j. Let H ∈ H(Λk). Assume that εi(H) > 0 and ε j(eiH) = ε j(H) > 0.
By Definition 15, wt(eie jH) = wt(e jeiH) holds. Then, eie jH = e jeiH holds by Proposition 34.
By assumption and (3), we can assume j , i − 1, i + 1. Then, we have φi(e jH) = φi(H) by
Definition 15. Thus, (5) is satisfied.

By Propositions 38, 39, and (5), (6) immediately holds.

Then we have the following from Definition 29 and Proposition 40.



Communications of JSSAC Vol. 5 15

Theorem 41 ([14])
Let λ ∈ P+. Then, we have a crystal isomorphism Φ : H(λ)→ B(λ) such that Φ(Hλ) = bλ.

The crystal structure on H(λ) can also be given by considering a combinatorial description.

Theorem 42 ([14])
Let λ =

∑
i∈I miΛi. For H ∈ H(λ), the maps wt, f j, e j, φ j, ε j ( j ∈ I) are computed as follows.

Fix j ∈ I.

1. wt(H) =
∑

i∈I(µi − µi+1)Λi.

2. For k ∈ {1, 2, . . . , j}, set φ(k)
j (H) = max{φ(k−1)

j (H) + Uk, j − Uk+1, j+1, 0}. Note that we regard

φ(0)
j as 0. Then, we have φ j(H) = φ( j)

j (H).

3. For k ∈ {1, 2, . . . , j+ 1}, set ε(k)
j (H) = max{ε(k−1)

j (H)+U j+2−k, j+1 −U j+1−k, j, 0}. Note that we

regard ε(0)
j as 0. Then, we have ε j(H) = ε( j+1)

j (H).

4. If φ j(H) = 0 then f jH = 0. If φ j(H) , 0, let

k f jH = min{k ∈ [n] | ∀l ≥ k, φ(l)
j (H) > 0}.

Then, we have f jH = (λ, µ′, 0, (U′kl)k<l) where

µ′ =
∑

k, j, j+1

µkϵk + (µ j − 1)ϵ j + (µ j+1 + 1)ϵ j+1,

U′kl =


Ukl − 1 if k = k f jH , l = j,
Ukl + 1 if k = k f jH , l = j + 1,
Ukl else.

5. If ε j(H) = 0 then e jH = 0. If ε j(H) , 0, let

ke jH = min{k ∈ [n] | ∀l ≥ k, ε(l)
j (H) > 0}.

Then, we have e jH = (λ, µ′, 0, (U′kl)k<l) where

µ′ =
∑

k, j, j+1

µkϵk + (µ j + 1)ϵ j + (µ j+1 − 1)ϵ j+1,

U′kl =


Ukl + 1 if k = j + 2 − ke jH , l = j,
Ukl − 1 if k = j + 2 − ke jH , l = j + 1,
Ukl else.

3 Algorithms for the Crystal Structure on K-hives
In this section, we give a set of algorithms to compute the components of the crystal structure on
H(λ) (λ ∈ P+) using two approaches. One approach is based on Definition 29, which implies that
the crystal structure on H(λ) is regarded as a subset of a tensor product of the form H(Λk) with
k ∈ I. The other approach is based on Theorem 42, which is a more combinatorial description.

To consider algorithms, we regard H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ) as a hash table with keys
λ, µ, γ, and (Ui j)i< j, where the value of λ is an array [λ1, λ2, . . . , λn], the value of µ is an



16 Communications of JSSAC Vol. 5

array [µ1, µ2, . . . , µn], the value of γ is an array [0, 0, . . . , 0], and the value of (Ui j)i< j is a two-
dimensional array [[U12,U13, . . . ], [U23, . . . ], . . . , [Un−1,n]].

To give algorithms for the crystal structure on H(λ) based on Definition 29, we first consider
algorithms for the crystal structure onH(Λk) (k ∈ I). The maps fi (resp. ei) (I ∈ I) forH(Λk) (k ∈
I) are computed by Algorithm 1 (resp. Algorithm 2). Note that the maps wt, φi, εi (i ∈ I) are
simply computed by Definition 15 as

∑
k∈I(µk − µk+1)Λk, max(µi − µi+1, 0), max(µi+1 − µi, 0),

respectively for H = (Λk, µ, 0, (Ui j)i< j) ∈ H(Λk).

Algorithm 1 Algorithm for fi on H(Λk)
Input: H = (Λk, µ, 0, (Ui j)i< j) ∈ H(Λk), i ∈ I
Output: fiH

1: if max(µi − µi+1, 0) = 0 then
2: return 0
3: end if
4: Take k0 from {k ∈ [i] | Uk,i > 0}
5: µi := µi − 1
6: µi+1 := µi+1 + 1
7: Uk0,i := Uk0,i − 1
8: Uk0,i+1 := Uk0,i+1 + 1
9: return (Λk, µ, 0, (Ui j)i< j)

Algorithm 2 Algorithm for ei on H(Λk)
Input: H = (Λ, µ, 0, (Ui j)i< j) ∈ H(Λk), i ∈ I
Output: eiH

1: if max(µi+1 − µi, 0) = 0 then
2: return 0
3: end if
4: Take k0 from {k ∈ [i + 1] | Uk,i+1 > 0}
5: µi := µi + 1
6: µi+1 := µi+1 − 1
7: Uk0,i := Uk0,i + 1
8: Uk0,i+1 := Uk0,i+1 − 1
9: return (λ, µ, 0, (Ui j)i< j)

Let us give an example of executing Algorithm 1.

Example 43
The action of fi on the Uq(sl4)-crystal H(Λ3) is computed as follows by Algorithm 1. Let
H = (Λ3,Λ3, 0, (0)k<l) ∈ H(Λ3). Set µ = Λ3. Note that Λ3 is represented by the partition
(1, 1, 1, 0). For i = 1, we have f1H = 0 since max(µ1 − µ2, 0) = 0. Also, for i = 2, we have
f2H = 0 since max(µ2 − µ3, 0) = 0. Let i = 3. In this case, max(µ3 − µ4, 0) = 1. Then we
can proceed to the next step. Since {k ∈ [3] | Uk,3 > 0} = {3}, k0 is uniquely determined to 3.
Then set ξ = µ, then set ξ3 = µ3 − 1 = 0 and ξ4 = µ4 + 1 = 1. Also, set Vi j = Ui j, and set
V3,3 = U3,3 − 1 = 0 and V3,4 = U3,4 + 1 = 1. Then we have fiH = (Λ3, ξ, 0, (Vi j)i< j). See Fig. 3.

Algorithms 1 and 2 generate results that correspond to Definition 15 as follows.

Proposition 44
For k ∈ I, let H ∈ H(Λk). Let i ∈ I.
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Fig. 3: Action of f3 on the Uq(sl4)-crystal H(Λ3)

1. Let K be the result of Algorithm 1 with inputs H and i. Then, K = fiH,

2. Let K be the result of Algorithm 2 with inputs H and i. Then, K = eiH.

Proof For k ∈ I, let H ∈ H(Λk). Let i ∈ I. (1) Let K be the result of Algorithm 1 with inputs
H and i. By Lemma 1, k0 in Algorithm 1 is uniquely determined. Then we have K = fiH from
Definition 15. Similarly, (2) can be shown.

For λ ∈ P+, the map Ψλ is computed by Algorithm 3.
The following is an example of executing Algorithm 3.

Example 45
Let n = 4, λ = (3, 2, 1, 0), and µ = (2, 3, 1, 0). Let H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ), where U12 = 1
and Ui j = 0 if (i, j) , (1, 2) and i < j. Then Ψλ(H) is computed by Algorithm 3 as follows.
Set ν = ℓ(λ) = 3. Let λ(2) = (λ(2)

1 , λ
(2)
2 , . . . , λ

(2)
n ), where λ(2)

k = 1 if k ∈ [ν] else λ(2)
k = 0.

Set U(2)
i j = Ui j for 1 ≤ i < j ≤ 4. Since min{l ∈ [4] | U1l > 0} = 1, set U(2)

11 = 1 and
U(2)

12 = U(2)
13 = U(2)

14 = 0. Since min{l ∈ [4] | U2l > 0} = 2, set U(2)
22 = 1 and U(2)

23 = U(2)
24 = 0.

Since min{l ∈ [4] | U3l > 0} = 3, set U(2)
33 = 1 and U(2)

34 = 0. Set

µ(2)
1 = U(2)

11 = 1, µ(2)
2 = U(2)

12 + U(2)
22 = 1,

µ(2)
2 = U(2)

13 + U(2)
23 + U(2)

33 = 1, µ(2)
4 = U(2)

14 + U(2)
24 + U(2)

34 + U(2)
44 = 0.

Set

λ(1)
1 = λ1 − λ(2)

1 = 2, λ(1)
2 = λ2 − λ(2)

2 = 1,

λ(1)
3 = λ3 − λ(2)

3 = 0, λ(1)
4 = λ4 − λ(2)

4 = 0.

Set U(1)
i j = Ui j − U(2)

i j for 1 ≤ i ≤ j ≤ 4. Set

µ(1)
1 = U(1)

11 = 1, µ(1)
2 = U(1)

12 + U(1)
22 = 2,

µ(1)
2 = U(1)

13 + U(1)
23 + U(1)

33 = 0, µ(1)
4 = U(1)

14 + U(1)
24 + U(1)

34 + U(1)
44 = 0.

Then Ψλ = (λ(1), µ(1), 0, (U(1)
i j )) ⊗ (λ(2), µ(2), 0, (U(2)

i j )). See Fig. 4

Algorithm 3 generates a result corresponding to an image of Ψλ.
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Algorithm 3 Algorithm for Ψλ
Input: H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ)
Output: Ψλ(H)

1: for k = 1, 2, . . . , n do ◃ Compute λ(2)

2: if k ∈ [1, ℓ(λ)]Z then
3: λ(2)

k = 1
4: else
5: λ(2)

k = 0
6: end if
7: end for
8: λ(2) := (λ(2)

1 , λ
(2)
2 , . . . , λ

(2)
n )

9: (U(2)
i j )i< j := (Ui j)i< j ◃ Compute (U(2)

i j )i< j

10: for i = 1, 2, . . . , n − 1 do
11: for j = i + 1, i + 2, . . . , n do
12: if j = min{l ∈ [n] | Uil > 0} then
13: U(2)

i j := 1
14: else
15: U(2)

i j := 0
16: end if
17: end for
18: end for
19: for k = 1, 2, . . . , n do ◃ Compute µ(2)

20: µ(2)
k :=

∑i
l=1 U(2)

li
21: end for
22: µ(2) := (µ(2)

1 , µ
(2)
2 , . . . , µ

(2)
n )

23: for k = 1, 2, . . . , n do ◃ Compute λ(1)

24: λ(1)
k := λk − λ(2)

k
25: end for
26: λ(1) := (λ(1)

1 , λ
(1)
2 , . . . , λ

(1)
n )

27: (U(1)
i j )i< j := (Ui j)i< j ◃ Compute (U(1)

i j )i< j

28: for i = 1, 2, . . . , n − 1 do
29: for j = i + 1, i + 2, . . . , n do
30: U(1)

i j := Ui j − U(2)
i j

31: end for
32: end for
33: for i = 1, 2, . . . , n do ◃ Compute µ(1)

34: µ(1)
i =

∑i
l=1 U(1)

li
35: end for
36: return (λ(1), µ(1), 0, (U(1)

i j )i< j) ⊗ (λ(2), µ(2), 0, (U(2
i j )i< j)

Proposition 46
For λ ∈ P+, let H ∈ H(λ). Let K be the result of Algorithm 3 with input H. Then, K = Ψλ(H).

Proof The statement immediately follows from Definition 18.

The map Ψ is defined to apply Ψλ (λ ∈ P+) repeatedly, and note that the algorithm for Ψλ is
given by Algorithm 3. Then, the map Ψ is computed using Algorithm 4.

The following is an example of executing Algorithm 4.
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Fig. 4: Action of Ψλ on H(λ)

Algorithm 4 Algorithm for Ψ
Input: H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ)
Output: Ψ(H)

1: H1 ⊗ H2 := Ψλ(H)
2: N = 2
3: while H1 < H(Λk) for any k ∈ I do
4: K1 ⊗ K2 := Ψ(H1)
5: H := K1 ⊗ K2 ⊗ H2 ⊗ · · · ⊗ HN

6: N = N + 1
7: Rename H as H = H1 ⊗ H2 ⊗ · · · ⊗ HN

8: end while
9: return

⊗
k∈N Hk

Example 47
Let n = 4, λ = (3, 2, 1, 0) and µ = (2, 3, 1, 0). Let H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ), where U12 = 0
and Ui j = 0 if (i, j) , (1, 2) and i < j. By Algorithm 3,

Ψλ(H) = ((2, 1, 0, 0), (1, 2, 0, 0), (04), (U(1)
i j )) ⊗ ((1, 1, 1, 0), (1, 1, 1, 0), (04), (U(2)

i j ))

:= H1 ⊗ H2,

where

U(1)
i j =

1 if (i, j) = (1, 2),
0 otherwise,

U(2)
i j = 0 (1 ≤ i < j ≤ 4).

Since H1 ∈ H((2, 1, 0, 0)), we proceed with the algorithm.

Ψλ(H1) = ((1, 0, 0, 0), (0, 1, 0, 0), (04), (V1
i j)) ⊗ ((1, 1, 0, 0), (1, 1, 0, 0), (04), (V1

i j))

:= K1 ⊗ K2,

where

V (1)
i j =

1 if (i, j) = (1, 2),
0 otherwise,

V (2)
i j = 0 (1 ≤ i < j ≤ 4).
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Then rename K1 ⊗ K2 ⊗ H2 as H1 ⊗ H2 ⊗ H3. Then, we have

Ψ(H) = H1 ⊗ H2 ⊗ H3

See Fig. 5.

Fig. 5: Action of Ψ on H(λ)

The result of Algorithm 4 corresponds to the image of Ψ.

Proposition 48
For λ ∈ P+, let H ∈ H(λ). Let K be the result of Algorithm 4 for input H. Then, K = Ψ(H).

Proof By Proposition 22, it is clear that Algorithm 4 yields the image of Ψ if the while state-
ment stops. For λ ∈ P+, let H ∈ H(λ). Suppose H1 ⊗ H2 ⊗ · · · ⊗ Hk+2 is obtained at the k-th step
of the while statement in Algorithm 4, and H1 < H(Λi) for all i ∈ I. Assume H1 ∈ H(λ(1)) for
λ(1) ∈ P+, where λ(1) , Λi for all i ∈ I. This means that there exists m ∈ [n] such that λ(1)

m > 1,
especially λ(1)

1 > 1. Set λ′ = λ(1) and m0 = λ
(1)
1 . Then at k + m0 − 1 step in the while statement,

we have

H1 ⊗ H2 ⊗ · · · ⊗ Hk+m0+1.

Assume H1 ∈ H(λ(1)). Note that, since the indices are renamed, we retake H1 and λ(1). By
Algorithm 4, we have λ(1)

m = max(λ(k)
m − (m0 − 1), 0) for m ∈ [n]. Since λ′ ∈ P+ and m0 = λ

′
1,

λ(1)
m ∈ {0, 1}. Hence H1 ∈ H(Λν) for ν ∈ I. Thus, the while statement stops.

To compute fi, ei (i ∈ I) on H(λ), we need the algorithm of Ψ−1 for the image of Ψ. Algo-
rithm 5 computes Ψ−1 for H ∈ Ψ(H(λ).

Proposition 49
For λ ∈ P+, let H ∈ H(λ). Let Ψ(H) = H1 ⊗ H2 ⊗ · · · ⊗ HN . Let K be the result of Algorithm 5
with input H1 ⊗ H2 ⊗ · · · ⊗ HN . Then, K = H.

Proof For λ ∈ P+, let H ∈ H(λ). Let Ψ(H) = H1 ⊗ H2 ⊗ · · · ⊗ HN . Let K be the re-
sult of Algorithm 5 with input H1 ⊗ H2 ⊗ · · · ⊗ HN . Assume that H = (λ, µ, 0, (Ui j)i< j) and
Hk = (λ(k), µ(k), 0, (U(k)

i j )i< j) for k = 1, 2, . . . ,N. Let Ψλ(H) = K1 ⊗ K2. Assume Km =

(ν(m), ξ(m), 0, (V (k)
i j )i< j). By Definition 18, we have λk = ν

(1)
k + ν

(2)
k , µk = ξ

(1)
k + ξ

(2)
k for k =
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Algorithm 5 Algorithm for Ψ−1

Input: H = H1 ⊗ H2 ⊗ · · · ⊗ HN ∈
⊗

k H(Λk), Hk = (λ(k), µ(k), 0, (U(k)
i j )i< j) ∈ H(λ(k)).

Output: Ψ−1(H) ∈ H(λ)
1: for i = 1, 2, . . . , n do
2: λi :=

∑N
k=1 λ

(k)
i

3: end for
4: λ := (λ1, λ2, . . . , λn)
5: for i = 1, 2, . . . , n do
6: µi :=

∑N
k=1 µ

(k)
i

7: end for
8: µ := (µ1, µ2, . . . , µn)
9: for i = 1, 2, . . . , n − 1 do

10: for j = i + 1, i + 2, . . . , n do
11: Ui j :=

∑N
k=1 U(k)

i j
12: end for
13: end for
14: return (λ, µ, 0, (Ui j)i< j)

1, 2, . . . ,N and Ui j = U(1)
i j + U(2)

i j for 1 ≤ i < j ≤ n. Since the construction of Ψ, we obtain

λk = λ
(1)
k + · · · + λ

(N)
k (k = 1, 2, . . . ,N),

µk = µ
(1)
k + · · · + µ

(N)
k (k = 1, 2, . . . ,N),

Ui j = U(1)
i j + · · · + U(N)

i j (1 ≤ i < j ≤ n).

Thus, we have K = H.

By Definition 29, the crystal structure on H(λ) is defined by considering H(λ) as a subset of
a tensor product of the form H(Λk) with k ∈ I. In detail, embedding H ∈ H(λ) into

⊗
k H(Λk)

by Ψ, then compute the maps wt, φi, εi, fi, ei (i ∈ I) by Definition 3, then pulling it back into
H(λ). Then, the maps wt, φi, εi, fi, ei (i ∈ I) are computed by the following algorithms. For
λ ∈ P+, let H ∈ H(λ). Let Ψ(H) = H1⊗H2⊗· · ·⊗HN , which is computed by Algorithm 4. Then
wt(H) is computed by wt(H) =

∑N
k=1 wt(Hk), where wt(Hk) is computed by algorithm of wt for

H(Λk′) for some k′ ∈ I. Then φi(H) is computed by φi(H) = φi(H1 ⊗ H2 ⊗ · · · ⊗ HN), where
φi(H1⊗H2⊗· · ·⊗HN) is computed by Definition 3 and φi for H(Λk) (k ∈ I). Similarly, εi(H) can
be computed. Also, fi(H) is computed byΨ−1( fi(H1⊗H2⊗· · ·⊗HN)), where fi(H1⊗H2⊗· · ·⊗HN))
is computed by Definition 3 and Algorithm 1. Similarly, ei(H) can be computed.

Proposition 50
Let λ ∈ P+. Let wt, φi, εi, fi, ei (i ∈ I) be computed using the above algorithms for H(λ). Then,
the crystal structure on H(λ) determined by these maps corresponds to the crystal structure
defined by Definition 29.

Proof By Definition 29, Proposition 48, and Proposition 44, the statement follows.

The crystal structure on H(λ) (λ ∈ P+) is also directly computed by Theorem 42. The
following algorithms compute the maps φi, εi, fi, ei (i ∈ I) based on Theorem 42. Note that the
map wt is simply computed by

∑
k∈I(µk − µk+1)Λk for H = (λ, µ, 0, (Ui j)i< j).

The following is an example of executing Algorithm 8.
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Algorithm 6 Algorithm for φi on H(λ)
Input: H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ), i ∈ I
Output: φi(H)
φi(H) := 0
for k = 1, 2, . . . , i do
φi(H) := max(Uki − Uk+1,i+1 + φi(H), 0)

end for
return φi(H)

Algorithm 7 algorithm for εi on H(λ)
Input: H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ), i ∈ I
Output: εi(H)
εi(H) := 0
for k = 1, 2, . . . , i do
εi(H) := max(Ui+2−k,i+1 − Ui+1−k,i + εi(H), 0)

end for
εi(H) = max(U1,i+1 + εi(H), 0) ◃ For k = i + 1
return εi(H)

Algorithm 8 Algorithm for fi on H(λ)
Input: H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ), i ∈ I
Output: fiH

1: if φi(H) = 0 then
2: return 0
3: end if
4: F := [0] ◃ Set an array
5: for k = 1, 2, . . . , i do
6: F := F.append(max(Uki − Uk+1,i+1 + F[k − 1], 0))
7: end for
8: k fiH := 1
9: for k = i, i − 1, . . . , 1 do

10: if F[k] < 0 then
11: k fiH := k − 1
12: break
13: end if
14: end for
15: µi := µi − 1
16: µi+1 := µi+1 + 1
17: Uk fi ,i := Uk fi ,i − 1
18: Uk fi ,i+1 := Uk fi ,i+1 + 1
19: return (λ, µ, 0, (Ui j)i< j)

Example 51
Let n = 4, λ = µ = Λ1 + Λ3. Note that Λ1 + Λ3 is represented by the partition (2, 1, 1, 0). Let
H = (λ, µ, 0, (0)k<l) ∈ H(λ). The action of f1 on H(λ) is computed as follows by Algorithm 8.
Let i = 1. Set F = [0]. Since U11 − U22 + F[0] = 1, set F = [0, 1]. Set k fiH = 1. Since
F[1] = 1 > 0, we have k fiH = 1. Then set µ1 = µ1 − 1 = 1, µ2 = µ2 + 1 = 2, U11 = U11 − 1 = 1,
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Algorithm 9 Algorithm for ei on H(λ)
Input: H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ), i ∈ I
Output: eiH

if εi(H) = 0 then
return 0

end if
E := [0]
for k = 1, 2, . . . , i + 1 do

E := E.append(max(Ui+2−k,i − Ui+1−k,i+1 + E[k − 1], 0))
end for
keiH := 1
for k = i + 1, i, . . . , 1 do

if E[k] < 0 then
keiH := k − 1
break

end if
end for
µi := µi + 1
µi+1 := µi+1 − 1
Uk+2−kei ,i := Uk+2−kei ,i + 1
Uk+2−kei ,i+1 := Uk+2−kei ,i+1 − 1
return (λ, µ, 0, (Ui j)i< j)

and U12 = U12 + 1 = 1. Then we have f1H = (λ, µ, 0, (Ui j)i< j). See Fig. 6.

Fig. 6: Action of f1 on the Uq(sl4)-crystal H(Λ1 + Λ3)

Algorithms 6, 7, 8, and 9 compute φi, εi, fi, ei, (i ∈ I) according to Theorem 42.

Proposition 52
For λ ∈ P+, let H ∈ H(λ). Let i ∈ I.

1. Algorithm 6 with inputs H and i yields φi(H).

2. Algorithm 7 with inputs H and i yields εi(H).

3. Let K be the result of Algorithm 8 with inputs H and i. Then, K = fiH.
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4. Let K be the result of Algorithm 9 with inputs H and i. Then, K = eiH.

Proof (1) and (2) immediately follow from Theorem 42. (3) is proved if k fiH in Algorithm 8
corresponds to the one in Theorem 42.

For λ ∈ P+, let H = (λ, µ, 0, (Ui j)i< j) ∈ H(λ). We can assume φi(H) > 0. This means that
k fiH is defined and

φi(H) =
n∑

k=k fi H

(Uki − Uk+1,i+1).

In particular, φ
(k fi H−1)
i (H) = 0 and φ

(k fi H )
i (H) = Uk fi H ,i − Uk fi H+1,i > 0 hold by the definition of

k fiH . Then we have

φ(m)
i (H) =

m∑
k=k fi H

(Uki − Uk+1,i+1) > 0 (m = k fiH , k fiH + 1, . . . , i).

By Theorem 42, F in Algorithm 8 is an array of φ(l)
i (H) such that F[l] = φ(l)

i (H) for l ∈ [i]. Then
max{k ∈ [i] | F[k] < 0} = k fiH − 1 holds, hence k fiH in Algorithm 8 corresponds to the one in
Theorem 42. Similarly, (4) can be shown.

4 Examples by khive-crystal
In this section, we show some examples of executing the algorithms given in Section 3. These
examples are computed by the originally implemented Python package named khive-crystal
[13]. Then we also give the usage of khive-crystal.

In khive-crystal, K-hive can be declared by the function khive. Furthermore, we can show a
K-hive as an image using the function view. The following code is an example of functions of
khive and view.

» from khive_crystal import khive, view
» H = khive(
.. n=4, alpha=[3, 2, 1, 0], beta=[3, 2, 1, 0], gamma=[0, 0, 0, 0], Uij=[[0, 0, 0], [0, 0], [0]]
.. )
» H
KHive(n=4, alpha=[3, 2, 1, 0], beta=[3, 2, 1, 0], gamma=[0, 0, 0, 0], Uij=[[0, 0, 0], [0, 0], [0]])

» view(H)
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The following codes compute the crystal structure on Uq(sl3)-crystalH(Λ2) by Algorithms 1
and 2.

» from khive_crystal import e, epsilon, f, khive, phi, view
» H = khive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
» view(H)

» f(i=1)(H)
# None
» view(f(i=2)(H))

The crystal graph of H(Λ2) can be shown by the function called crystal_graph, where the
function khives is the function to declare H(Λ2).

» from khive_crystal import khives, crystal_graph
» crystal_graph(khives(n=3, alpha=[1, 1, 0]))
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Note that the crystal graph is realized by the open source graph visualization software called
Graphviz.

The crystal structure on H(λ) (λ ∈ P+) is defined by algorithms of the crystal structure of
H(Λk) (k ∈ I), Ψλ, Ψ, andΨ−1. Then we first show an example for Algorithms 3, 4, and 5, which
are implemented as functions psi_lambda, psi, and psi_inv, respectively. The following code is
an example for Ψ(3,3,0) and Ψ for H((3, 3, 0)).

» from khive_crystal import khive, psi, psi_lambda, view
» H = khive(n=3, alpha=[3, 3, 0], beta=[3, 3, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
» psi_lambda(H)
[

KHive(n=3, alpha=[2, 2, 0], beta=[2, 2, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])

]
» view(psi_lambda(H))

» psi(H)
[

KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])

]
» view(psi(H))
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Then we show examples of algorithms of fi for H(λ). The following code is an example of
f2 for H((3, 3, 0)).

» from khive_crystal import khive, psi, psi_inv, view
» H = khive(n=3, alpha=[3, 3, 0], beta=[3, 3, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
» psi_inv(f(i=2)(psi(H))) # = fi(H)

The crystal structure on H(λ) (λ ∈ P+) is also computed by Algorithms 8 and 9.

» from khive_crystal import khive, e, epsilon, f, phi
» H = khive(n=3, alpha=[3, 3, 0], beta=[3, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
» phi(i=2)(H)
3
» view(f(i=2)(H))

The crystal graph of H((3, 3, 0)) is the following.

» from khive_crystal import khives, crystal_graph
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» crystal_graph(khives(n=3, alpha=[3, 3, 0]))

5 Concluding Remarks
In this paper, two approaches are given for a set of algorithms for crystal structures on H(λ) for
λ ∈ P+. One approach can be obtained by considering H(λ) as a subset of a tensor product of
the form H(Λk) with k ∈ I. This method also provides an algorithm to embed a K-hive into
the tensor products of K-hives whose right edge labels are determined by a fundamental weight.
The other approach can be obtained by considering a combinatorial description of the crystal
structure on H(λ).

Recall that H(λ) realizes the crystal basis of the irreducible highest weight module of the
highest weight λ. Then, we can compute the action of Uq(sln) on V(λ) at q = 0 and apply it to
compute other representation problems by crystals of K-hives. For example, the tensor product
decomposition problem may be one of the problems, which can be computed from crystals of
K-hives.
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