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Abstract

For the given coprime polynomials over integers, we change thefficieats slightly over in-

tegers so that they have a greatest common divisor (GCD) over integers. That is an approximate
polynomial GCD over integers. There are only two algorithms known for this problem. One is
based on an algorithm for approximate integer GCDs. The other is based on the well-known
subresultant mapping and the lattice basis reduction. In this paper, we give an improved algo-
rithm of the latter with a new lattice construction process by which we can restrict the range of
perturbations. This helps us for computing approximate polynomial GCD over integers of the
input erroneous polynomials having a priori errors on some digits of thefficieats.

Key words Approximate Polynomial GCD, Lattice Basis Reduction

1 Introduction

Symbolic numeric algorithms for polynomials are very important, especially for practical com-
putations since we have to operate with empirical polynomials having numerical errors on their
codficients. Recently, for those erroneous polynomials, many algorithms have been introduced,
approximate univariate GCD and approximate multivariate factorization for example. However,
for polynomials over integers having erroneousfioents (e.g. rounded from empirical data),
changing their caicients over reals does not remain them in the polynomial ring over integers,
hence we need algorithms designed over integers. In this paper, we discuss about computing a
polynomial GCD of univariate or multivariate polynomials over integers approximately. Here,
“approximately” means that we compute a polynomial GCD over integers by changing their coef-
ficients slightly over integers so that the input polynomials still remain over integers. We improve
one of known algorithms for computing an approximate polynomial GCD over integers defined
below.

Definition 1 (Approximate Polynomial GCD Over Integers)
Let f(X) andg(X) be polynomials in variable® = X, ..., X, overZ, and lets be a small positive

integer. If they satishf (X) = t()h(X) + 41(x), 9(X) = S(R)(X) + 44(X) ande = max{i4+]|, [|44l}
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for some polynomiald s, A4 € Z[X], then we say that the above polynomiéX) is anapproximate
GCD overintegers We also say thd{X) ands(X) areapproximate cofactors overintegersand we
say that theitoleranceis ¢. ( ||pl| denotes a suitable norm p(X).) <

Example 2
Let f(x1, X2) andg(xy, x2) be the following polynomials over integers, which are relatively prime
and supposed to have numerical errors on theiffoents.

f(Xl, Xg) = 1530(§X% - 3601X%X2 + 2109(% - 171)(1X§

+ 3506x3 %2 — 3703 — 699)(% + 94x, + 1561,
2755@2 — 585X, + 3110¢ — 511842

+5296x3 % + 351x; + 2275(% — 1098, — 3822

0(X1, X2)

We would find the following approximate GCD over integers, where the underlined figures are
slightly changed to make them having a non-trivial polynomial GCD.

f(x1, %) = (34x3X2 — 37x1 — 25X + 39) X (45x1 X2 — 571 + 28%; + 40)
= 1530<§x§ - 360_3<§xz + 2109(% - 17_3x1x§
+ 35041 %, — 37033 — ﬂOx% +92x; + 156Q
o(xe, X2) =~ (34xyx — 37%y — 25% + 39) X (81x3 %o — 84x; — 91x, — 98)

= 2754Gx5 — 5853¢ X, + 3108¢F — 5119 X5
+ 5294 X, + 350x; + 2275G — 1099, — 3822

In this cased = 2X2Xo+ 2X1 X5+ 2X1 Xo + X5+ 2%+ 1, Ag = XaX5+2XE Xp + 2X2 + X1 X5+ 2X1 X + X1 + Xp
ande = 2 in theco-norm. <

We note that for polynomials over the complex numbers, there are many studies and various
algorithms (L2,16,4,[15,131,[30, 5, 32,123,134, 133,125,[13,122,(9, 24,18, [16, 21, 126, 27,20, 2, 3, [7]).
Hence one may think that we can compute an approximate GCD over integers by rounding the re-
sult by those algorithms since they compute approximate GCDs over complex numbers. However,
it is difficult to make them as polynomials over integers since the resulting tolerance easily becomes
large and far from the given polynomials (sé€)]). Therefore, we need algorithms designed for
polynomials over integers.

For computing approximate GCD over integers, there are two known algorithms. One is based
on the result from approximate integer common divisors by Howgrave-Gralddih (The other is
based on the well-known subresultant mapping and the lattice basis reduction (the LLL algorithm
[14]). The former algorithm is originally proposed by von zur Gathen and Shparlin2gj) (&t
LATIN 2008 and revised by von zur Gathen et @8§]). Their algorithm only works for very
tiny tolerances and one of input polynomidl&) andg(X) must be given exactly and can not be
perturbed. However, the algorithm always can compute an approximate GCD over integers if the
given polynomials satisfy the certain conditions. The latter algorithm is proposed by the present
author ([L7]) at ISSAC 2008 and revisedl]). In contrast with that by von zur Gathen et al., this
algorithm works for not only very tiny but also small tolerances and all the given polynomials can
be perturbed (as described in the definition). However, any theoretical condition which guarantees
that the algorithm can compute an approximate GCD over integers, is not given.

1.1 The problem to be solved

In this paper, we give an improved algorithm with a new lattice construction process by which we
can restrict the range of perturbations in some cases. This helps us for computing approximate
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polynomial GCD over integers of the input erroneous polynomials having a priori errors on some
digits of their codficients. For example, the known methods can not compute any approximate
polynomial GCD over integers for the following polynomials.

f(X) = -302260¢ — 1749335283 + 459434462 + 231047900996 — 143756712
” (889x2 +51270K — 319) (—340x2 — 69X + 45064$ —2x 103,
g(x) = 526407468* + 303589900698 — 69087519%2 — 323202349 + 205289

(889 + 51270% - 319) (5921402 — 978x — 631) - 5 x 10°x* + 4 x 1C°.

In this case, the tolerance (the absolute error)sl®® in the co-norm and the relative error is not
small in relation to the smallest cieients hence computing an approximate GCD over integers
for this pair of polynomials is not so easy. In fact, the known algorithf©g ([18]) can not detect
any expected result.

One may think that this example seems to be odd. However, this situation possibly occurs in
some computations with multi-precision integers (each integer is represented as an array of word
size integers). For example, transmission errors on some elements of the array, computing lower
and higher digits separately and so on. In fact, the above pair of polynomials has perturbations
on the second digit only (as an array offlifitegers) hence they are in this case. Moreover, this
is also useful for simplifying algebraic expressions (e.g. each simplicity of expression is heavily
depending on the number of terms not the magnitude dfictents in general) as in the following
polynomial.

(286X — 54821x, — 3907787
+(203830¢ + 1127664%; + 35293 x; — 179303 — 990865, + 54765
(22%, + 1217)((13¢ — 3211)¢ + (9265¢ + 29)x; — 815xp + 45)+ 5 X 10PxpXy.

(X1, %2)

For this problem, we review the algorithm given by the present auth8})(in Section2. We
give a new lattice construction process in Sect®rincluding various numerical examples. In
Section4, we give some remarks for this extension. We note that the present article is an ex-
tended work of the presentatiofif]) with the extended abstract at SNC 2011 (Symbolic-Numeric
Computation, June 7-9, 2011, San Jose, California), and the ideal of this paper is based on the
preliminary presentation about computing approximate GCD of integers (not polynomials) by the
present author in Research Institute for Mathematical Sciences, Kyoto University in 2010.

2 Approximate GCD by Lattice Basis Reduction

We review the known resultI[7],[[18]) briefly. Let f(X) andg(X) have total degrees = tdeg(f)
andm = tdegg@), respectively. We call the following mappii$j( f, g) the subresultant mapping of
f(X) andg(X) of orderr.

Pror1XPnr1 — Prmra

Si(f,0): (s(R), (X)) —  S(X)f(X) + t(xa(X)

wherer = 0,...,min{fn,m} — 1 and®y4 denotes the set of polynomials in variabbes..., x,,
of total degreed or less. We denote the d@ieient vector of polynomiap(X) by vect(p) w.r.t.
the lexicographic ascending order in this article. We note that any term order can be used for
representing cdicient vectors since the order is not essential. To see the number of elements

of a codficient vector, we define the notatiofig, = (d‘;”) hence the number of termé - - X
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satisfyingiy + --- + iy < d can be denoted b§yo. Thek-th convolution matrixCy(f) is defined
to satisfyCy(f)vect(p) = vect(f p) for any polynomialp(X) of total degreek — 1 or less, where
vect(p) € ZP1oxl andCy(f) e ZPr10¥-10, We have the matrix representation of the subresultant

mapping:Sy}(f, ) = (Crmr () Cnr(9)) Of size Bnim-1r) X (Bm-1r + Bn-1r), Satisfying

Si(f,9) : Prr-1 X Pnr-1 = Primr-1
9 (vect@) tvectt) ) —  vect(sf+tg) = Syl(f, g)( vect(s) ! vectf) ! )t

This mapping is the same as [@0], and has the same property thdi)/t(X) and g(xX)/s(X)
is the GCD off(X) andg(X) if r is the greatest integer such that this mapping is not injective.
Hence by computing null vectors &yl (f, g) approximately for the given coprime polynomials,
we can compute candidate vectors of approximate cofactors over integers. This procedure can be
done by finding short vectors by the well-known LLL algorithiiai4]). For this, we construct the
lattice generated by the row vectors 6€f, g, r, ) which is defined as the following matrix where
r denotes the order of the subresultant mapping.

L(f,9,1,0) = (Eg, 1, 4, | ©- SYH(T, )

whereE; denotes the identity matrix of sizex i andc € Z. The size of£(f,g,r,C) iS Bn-1r +
Breir) X Brevr + Bm-1r + Brrm-1r). We note that we mark a block matrix with a vertical bar to
distinguish the identity matrix representing a collection of linear combinations from the matrix
formed by the coficient vectors.

However, the short vectors found are only candidate cofat{gysaind s(X) € Z[X] such that
s(X) f(X) +t(X)g(X) ~ 0, andf(X) andg(X) may not be divisible by(X). To compute an approximate
GCD from the candidate cofactors, we apply the LLL algorithm again to the lattice generated by
the row vectors of the following matrix{(f, g,r, c,t, s) of size Br110+ 1) X (Bno+Bmo+Br+10+1).

7_((1:, g7 r? Ca t’ S) = (Eﬁr+l,0+1

c-vect(f)! c-vect@)!
C-Cra(=t)! c-Cria(9)t |-

We have the following lemmas ifi§].

Lemma 3

Let B be a bound of maximum absolute value of @méents of any factors of(X) andg(X). For
the lattice generated by the rows.6€f, g,r, c,) with ¢, = 26r-utbnr=D/2 g " "+ B 1 (B, the
LLL algorithm can find a short vector whose figt 1, + Bm-1r €lements are a multiple of the
transpose of the cdiécient vectors of cofactors df(X) andg(X) by their GCD, ifr is the greatest
integer such that the subresultant mapping is not injective. <

Lemma 4

Let B be a bound of maximum absolute value of @mgents of any factors of(X) andg(X). For
the lattice generated by the row vectorstoff, g, 1, Cy,t, S) with ¢y = 264102 B 19+ 1B + 1,
the LLL algorithm can find a short vector whagend, . . ., (Br.+10 + 1)-th elements are a multiple of
the transpose of the cfiient vector of the GCD of (X) andg(X), if r is the greatest integer such
that the subresultant mapping is not injective. <

For example, we consider the following pair of erroneous polynomials.

f(X)
a(x)

2052 + 18x - 27
29%% + 61x + 19

Ax+T7)(Bx—-4) - x+ 1,
A+ T)(Tx+3)+x2 - 2.
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We construct the following matrix(f, g, r, c) with r = 0 andc = 1, and apply the LLL algorithm
to the lattice generated by the row vectors/gf, g, r, ).

0 19 61 29 0 -45-3 -7/ 5-14 3 5
0 0 19 61 29| |-56-3 —9/-14 -2 -1 -6
0-27 18 20 0 -79-5-13] 2 5 12 1|
1 5

0
0
1
0 0 -27 18 20 -4 -3 -8/ 5 13 -15 -15

10
01
00
00
We take the first row vector as candidate cofactors (we note that we have to seek the candidate

through all the short vectors). We construct the following matiif, g, r, c,t, s) with ¢ = 1 and
apply the LLL algorithm, to compute an approximate GCD.

10 0/-27 18 20 19 61 2 1-7-41-10-201
010 -4 5 0 3 7 0f—-|0 1 0-4 50 37 0.
001 0-4 5 0 3 7 0O 0 1 0 45 037

Hence, we get»+ 7 as an approximate polynomial GCD over integers axe 8 and & + 3
as approximate cofactors. We note that there are more complicated examples, some lemmas and
techniques for decreasing the computing-time (4&[[L8]) though we do not show them here.

3 Digits-wise Lattice

The algorithms introduced iil[f] and [18] work well for nearby polynomials having polynomial
GCD, according to the numerical experiments therein. However, they can not detect any approxi-
mate GCD for the following type of polynomials as noted in the introduction. We note again that
this problem is not so special in practice (multi-precision integers, simplifying algebraic expres-
sions and so on). It could be more general word sizes (€% t®ugh the word size we use here

is 10" since this is easy to understand and does not exceed the paper width.

f(X) = 323+76x2+22x+15 = (4x+5)(8x% + 4x + 3) + 20x% — 10x,
g(x) = 10x°+53x? +59x + 40 (4x + 5)(5%% + 7x + 6) — 10x® + 10.

To extend the algorithms for the above case (all thefoments have a priori errors on only the
limited number of digits), we introduce the following digits-wise lattice instead @, g, r, ¢) by
extending the ca@cient vector to the digits-wise.

L(f,g,r,c) =
100000405953 10 O 1000004059531 0000
010000 040595310 01000000405953100
0010000 04059531 00100000004059531
000100Q015227632 0 00010015227632000
00001 0 15 22 76 32 00001Q000152276320
000O00O 0 0152276 3 0000010000152 2763

However, the row spaces of the above matrices are not the same and they are essdfaralht di
since digit-wise operations can not follow the carrying and borrowing operations for integers. For
computing an approximate GCD we need to guarantee that the row space haditbienteectors
corresponding to their cofactors, hence we have to perform some atrtificial carrying and borrowing
operations in this row space. To do this, we add some extra row vectors representing carry and
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borrow digits to the matrix as follows.

10000 4 0 59 53 10 00 0 G
01000 00 4059 5310 00(¢d
00100 00 00O 4059 53 10(d
00010 1522 76 32 0000(
00001 00 15 22 7 6 3 2 00U(
00000 00 00O 15 2 2 7 6 3 2
000000G-1210 0 0 0 O OO 0 O O (
00000O0 0 0-110 0 0 0 0O 0 0 0QC
00000 0 0 0 01120 0 0 0O O O O extra rows
00000 0 0 00 O0O0O-110 0 0 0O '
00000 00 00O OO O0OO0O-110 0O
00000O0 00 00O 0O OO O 0110

Moreover, in this case, if we can assume that only the second digit has a priori error hence we
multiple the columns except ones corresponding to the second digit by 100 as a penalty weight.
The LLL algorithm gives the following result for the lattice generated by row vectors of this scaled
matrix.

1 -2 6-2 151 0-5 0-3 0 16 0-5 0-10 O
3 4 8-6-7-53 0 10 0 3 0-12 0-14 0 -8 0
0-10 010 O Q15 0-18 0 17 0-21 0-10 O 0O O
2 -4 2-4 2 02 0-10 0-31 0 -5 0 13 0 2 0
6 -2 -4-2 6 021 0 32 0 2 0 11 0-4 0 -4 0
1 2-16 2 9 §-1 0 20 0-15 0 1 0-16 0 0 O
2 4 2-6-3 0/-1 0 10100-10 0 -7 0 5 0 2 of
3 -1 46 10-3 0-7 0 10 0 -5-100-19 0 -4 0
1 -2 4-2-1 001 0 -8 0 -8100 0 0 16 0 4 G
3 5-14 1018 0 8 0 15 0-9 0 -7-100 -1 O
3 -2 46 3 1-3 0-8 010 0 7 0-6 0 -1200
2 -4 2 1 2 0950 1 0 7 0 11 0 13 0 2 b

We can see that the resulting matrix has the row vector corresponding to tfieieaevectors of
expected approximate cofactorsig& 4x + 3, 5x° + 7x + 6) on the second row underlined. In the
following subsections, we formalize this process into definitions and an algorithm.

3.1 Definitions of Digits-wise Representation

We denote the canonical form of lengthof the basé digits in the integen as

.,a1, ag} such that
O<sign@a <b (i=0,...,w-2)
sign@) = sign@) (i=w-1).

Yae Z, digits,,(a) = {aw-1, ..
a=Y"'ab and {

For example, we have digits,(123)= {12 3}, digits;;3(123)= {1, 2, 3}, digits;(4(123)={0, 1, 2, 3}
and digitsy5(—-123) = {-1,-2,-3}. We extend the cdgcient vector of polynomiap(X) to the
digits-wise operations and denote it by vggtp) whereb andw are the base number and the
length of the list of digits, respectively, such that

vechw(p) = {digits, ,(pe) - .. digits, ,(po)}' where vectp) = {pe ... po}.
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For example, we have vagh(32x + 76x? + 22x + 15) = {1,5,2,2,7,6, 3,2}'. We note that the
sizes of the coficient vectors vegt,(f) and veciw(g) of f(X) andg(X) in the digits-wise form are
W X fBno andw X Bmo, respectively. Therefore, their inverse mappings q;g)(&) and vecgyt,(-) can
be defined as follows.

w-1

digits;,(8) = > abl, vect,(p) = vect (digits; ,(Bus,o): - - - digits; 1, (Po))

i=0

whered = {ay_1,...,a1,a) € Z¥ andp = {ﬁthpno’ ., Pt € Z%Fo, and vect!(-) is the conven-
tional mapping from the cdicient vector to the polynomial.

We also extend thé&-th convolution matrix and the matrix representation of the subresul-
tant mapping to the digits-wise operations in the same manner and denote th€gy, i)
and Syl pw(f, g), respectively. We note that in general they do not sa@fyw(f)vecbw(p) =
vechy(fp) for any polynomialp(X) of total degreek — 1, however this is not the matter in our
approach. Moreover, we have vggtf) = vect(f), Cxp1(f) = Ck(f) andSyl1(f, 9) = Syl(f, 9).

For the digits-wise lattice introduced in the beginning of this section, the carrying and borrow-
ing are important hence we define the following carry-borrow ve@gys (i = 0,1, ...,w—-2) and
matrix Zpw, satisfying digitgy,(Zow) =0 ( = 0,1,...,w—2).

Zb,W,i = {0, ey O, _1, b, 0, ceey O}t (S ZW, Zb,w = {Zb,W,O .. Zb,W,W*Z}t <] Z(W—l)XW.
S~— S—

i w—i-2

We also extend’(f,g,r,c) andH(f,g,r,ct, s) as follows and denote them by w(f, g, r, c) and
How(f, 0,1, ¢, 1, 9), respectively.

Eﬁn—l.r +Bm-1.r C: SYL,b,w(f, g)t
C- Zbw

Low(f,0,1,0) = C- Zow ’

C- Zb,w

£ c-vechy(f)!  c-vechw(9)
Brerotl o Cr-¢—2,b,w(_t)t C- Cr-¢—2,b,W(S)t

C-Zbw

Wb,W(f’ g.rcC, t, S) = C- Zb,W

C-Zow

The sizes ofLpw(f, 9,1, C) andHpw(f, 9.1, C,t, S) are (Bn-1r +Bm-1r) + (W—1)Bnim-1r) X Br-1r +
Brm-1r + WBnim-1r) @nd Bri10+ 1+ (W= 1)([Bno +Bmo)) X (Br+1.0 + L+ W(Bno +Bmo)), respectively.

Example 5

We show some examples 8§ w(f, g, r, c) andHyw(f,0,1,C,t, S) for
f(X) = 32¢+56x°+32x+15 = (4x+5)(8%° +4x+3), t(x) = -8x% —4x -3,
g(x) = 20x3+53x° +59x + 30 = (4x+5)(5%° + 7x+6), S(X) = 5x% + 7X + 6.
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We have the following matrices for the base number10 and lengthw = 2 if we assume that the
order of subresultant mappingdsandc = 1.

iy
o
w

L102(f,09,0,1) =

ROOPRKR OO
|
| o
cNoNoNeoNoNelloNé N Ve Ne i)

OO0 OoOOoOFRPRoOOFRr WO WU

|_\
OO0 O0OQPOoOouNOO OW

coolFPoorwowurmwnm

coFocoolwuwurmuaNn

H
coCPOoolvoeoNOwO

=
oPPo0coolonvowoo

o"P0cooluwouno

cocoocoocooooocoocoo
Oo0oo0oo0cooocoorocoo
coocoocoooor oo o

|

H
loNoNoNoNola|leNa R NoloNa
H

©CCocogolwoonoo

H
C9cocoanamaocanano

[eNeoNoNoNoNoNoNollol el cNeoNoNoNeoNolloNoNoNol o]
SO0 O0O00 OOk OO cNeoNoNoNeoNolloNoNeol SN elNe]

=
[elieNoNe]

[cNeoNeoNoNeoNeoNeNe]leRNiVNe|

[cNoNoNoNoNoNaol JlioNel
O o oowu

Uuulud

[

OocooocoocokRoocow ogoooo
Sooloomn

Hig2(f,9,0,1,t,9) =

H
cocooco®PCoopmonn

cocoocooFFocogpoloow

coolFPocooloow

H
o
oo ©Coooolo~o©

H
co CPOocooloow
I—‘OOOO

H
c':oooOOoo\lmw

I—‘OOOO

[

OO0OO0OO0O0COO0OOOwhAN
|
cOocoocoocoorFPooloow
|_\
[cNeoNeNoNol®Nole] W NN Mo

coocococoooloor
H

coo®Poo

OOOOOr—\

o

<

For any fixed non-negative integervect(-) and vec&t,(-) can be thought as linear mappings
overZ between?, andZ"¥n where®, is a submodule oZ[X] defined in the previous section.
However,?,, andZ"¥# are not isomorphic by these mappings. We define the quotient module of
Z"$no py the equivalence relatiorf*= giff vecglw(fj = vecg\lN(Q)” or its subspace generated by
the row vectors of block diagonal matrix (JZb,W,’. s Zowh and we denote this guotient module
by Zmﬁ”*O. By these definitions?,, is isomorphic th‘Kf”"’ by vechw(-) and vegtl,().

Lemma 6

Let B be a bound of maximum absolute value of @mgents of any factors of(X) andg(X). For
the lattice generated by the row vectors&ify(f,g,r,c,) with ¢, = 26r+huir+W=DBnm1,-1)/2
vBn_1r + Bm-1:B, the LLL algorithm can find a short vector whose fi#gt, +Bm_1, €lements are
a multiple of the transpose of the dheient vectors of cofactors df(X) andg(X) by their GCD, if
r is the greatest integer such that the subresultant mapping is not injective. <

Proof There are cofactotéX) and s(X) of f(X) andg(X) by their GCD, respectively, if is the
greatest integer such that the subresultant mapping is not injective. Hence, the lattice generated
Wxﬁnﬂmlj

by row vectors ofLyw(f,g,r,c.) has the following vectotn sincez, is isomorphic to
Prim-r—1 as shown above.

Umin = (the transpose of the cfieient vectors o§(X) andt(xX), 0 - - - 0).

WXBnim-1,r
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The LLL algorithm can find a short vectarsatisfying

”U”ZS 2(,3n—1.r+ﬁrm1.r+(W_1)ﬁn+rm1.r—l)/2 ||Umin||2 .

Since all the non-zero elements of rightx Bn.m-1r columns of any row vectors in the lattice
which is generated by the row vectors 6§ (f,g,r,cs) must be larger than or equal ty =
200-1rtBma+W-Dbnemar-1)/2 3 7 7B B in absolute value, the right x Bn,m-1, columns of

the found short vectall must be zeros. This means that the transpose of the vector formed by the
first Bn-1r + Bm-1r €lements ofiis in the null space 08yl yw(f, g) hence in that oBy}(f, g) and

the lemma is proved. ]

Lemma 7

Let B be the maximum absolute value of édaents of any factors off(X) andg(X). For the lattice
generated by the row vectors®,(f, .1, Cx, t, S) with ¢y = 2610t W=Dbno*bno))/2 (5 o+ 1B
+1, the LLL algorithm can find a short vector whdded,. . ., (Br.1.0+ 1)-th elements are a multiple
of the transpose of the cfieient vector of the GCD of (X) andg(X), if r is the greatest integer
such that the subresultant mapping is not injective. <

Proof The proof is similar to that of Lemnigh ]

We note that in LemmE] the short vectors corresponding to the GCD must halien the
first element since this means the number offtoient vectors off (X) andg(X) reduced by the
codficient vectors of cofactors. Moreover, this can be thought as the closest vector problem (CVP)
hence it may be possible to use Babai’'s nearest plane algorifjringtead of the method based
on the lattice in Lemmil

Example 8
For polynomials in ExamplB, we have the following matrices with the base nuntberl0, length
w = 2, orderr = 0, ¢, = 9658andcy, = 4829if we use the Landau-Mignotte bound Bfx) and

9(x).
L102(f,9,0,9658)=

10000 Q28974 0 48290 86922-- 0 0 0 0
01000 0 0 28974 0--- 19316 0 0 0
00100 0 0 0 0.-- 48290 28974 19316 )
00010 9658 48290 28974 19316 - 0 0 0 0
00001 0 0 9658 48290--- 28974 19316 0 0
000O0O 0 0 0 0.-- 48290 57948 28974 1931p
0 000 0 0-9658 96580 0 0--- 0 0 0 of
000O0O 0 0 -9658 96580 - - 0 0 0 0
000O0O 0 0 0 0. 0 0 0 0
000O0O 0 0 0 0. 0 0 0 0
000O0O 0 0 0 0--- -9658 96580 0 0
000O0O 0 0 0 0-- 0 0 -9658 96580
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Hio2(f,9,0,4829t, 9) =

1 0 0] 4829 24145 14487 9658 24145- 43461 24145 14487 9658 0
010 0 14487 0 19316 0-- 33803 0 24145 0 t
001 0 0 0 14487 0.-- 28974 0 33803 0 2414p
0 0 0/-4829 48290 0 0 0-- 0 0 0 0 0
000 0 0 —-4829 48290 0-- 0 0 0 0 0
000 0 0 0 0-4829 ... 0 0 0 0 0
000 0 0 0 0 0--- 0 0 0 0 0
000 0 0 0 0 0-- 0 0 0 0 0
000 0 0 0 0 0--- 48290 0 0 0 0
000 0 0 0 0 0-- 0 —4829 48290 0 0
000 0 0 0 0 0-- 0 0 0 —-4829 48290

By the LLL algorithm we found the following short vectors and in fact their first rows are corre-
sponding to the caBcient vectors of cofactors and GCD tfx) andg(x).

L102(f,9,0,9658)=

34 8-6-7-5 00O 0--- 00 0 0
-12-2 0 0 1/-28974 0 0 9658--- —9658 0 —9658 19316)’
Hioo(f,g,0,4829t, 5) =
1 -5 4|0 00 0O 0 --- 00 00 0
(0 1 -1|0 214487 0O 4829 0--- 4829 0 -9658 O —24145)'

Note that 1) we show only the first and second shortest short vectors found though there are more
short vectors that are not corresponding to approximate cofactors and GCD, and 2) the LLL algo-
rithm can find the expected short vectors with much smajlemdcy in most cases. In fact, short
vectors in this example can be computed frgma»(f, g, 0, 10) andHio2(f,9,0,10t, S). <

3.2 Algorithm in Digits-wise Representation

We consider the case introduced in the beginning of this section hence we assume that all the
codficients have a priori errors on only the limited number of digits. For such polynomials, the
resulting tolerance defined in Definitiorl] easily becomes large even though the norm of errors

in the digits-wise representation is small. We need to adapt the definition to the digits-wise rep-
resentation. By the following definition, we have digits-wise toleranrggs = ¢ = 20, 1092 = 2

andesy = 4 in the co-norm for the pair off(x) = (4x + 5)(8x? + 4x + 3) + 20x?> — 10x and

g(X) = (4x + 5)(5%% + 7x + 6) — 10x3 + 10 for example.

Definition 9 (Digits-wise Approximate Polynomial GCD Over Integers)

Let f(X) andg(X) be polynomials in variable® = xi, ..., X, overZ, and lets be a small positive
integer. If they satisfif (X) = t(X)h(X) +4+(X), 9(X) = S(XYn(X) +44(X) andepw = max|ivechw(d+)ll
,lIvechw(dg) I} for some polynomialsis, Ay € Z[X], then we say that the above polynomntigX)
is andigits-wise approximate GCD over integeraw.r.t. the base numbdrand lengthn. We also
say thatt(X) ands(X) are digits-wise approximate cofactors over integersand we say that their
toleranceis ey, ( |Ipll denotes a suitable vector nojm. <

For computing digits-wise approximate GCD over integers, the lemmas introduced above do
not guarantee that we can find the ftment vectors of approximate cofactors and approximate
GCD by the LLL algorithm. However, as same as the algorithm&.&j, the short vectors found
have a possibility that corresponding polynomi#i§ ands(X) € Z[X] satisfy S(X) f (X) + t(X)g(X) =~
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0, and they can be candidate approximate cofactors. Moreover, in the digits-wise representation,
we have to distinguish correct digits from erroneous digits in the digits-wise lattice. We define the
following diagonal weight matrixi¥,w(kia, k£, C, &, Cg) to distinguish them.

Cs (I 68)

Whow(Kia, Ker, €, &, ce) = diag(L...,1W, ..., W), W= {Cp-1,...,Co}, Ci = :

Kig Ket

where we assume that the ¢eients have a priori error on theh digits in the basé representa-

tion for anyi € & c Z.o, andc andcg are penalty weights that force the LLL algorithm to reduce
more correct digits (columns) than other digits and reduce more erroneous digits tifaciestde
digits of candidate factors, respectively in the lattice basis. With this diagonal weight matrix, we
define the following matrices that are based/f,(f, g,r, 1) andHpw(f, 9,1, 1,1, 5), respectively.

- 'Zb,W( f? g» r9 Cs 87 CS) = ‘Lb,W(fs gs r3 1)(Wb,w(ﬁn—1,r + ,Bm—l,h Wﬁn+m—1,rs C, 85 C8)3
7.{b,W( fv g,rc, t7 S, 8’ CS) = 7_{b,W(fs gr, 17 t’ S)(Wb,W(ﬂr+l,O + 17 W(BH,O + Bm,o)’ C, 8’ CS)'

Lemma 10

Let B be the maximum absolute value of ¢édeents of any factors of(X) andg(X) with perturba-
tions. For the lattice generated by the row vectorsfgﬁ(f, g.r.¢;, &, cg) with the followingcy,
the LLL algorithm can find a short vector whose fjBat1, + Bm-1r €lements are a multiple of the
transpose of the cdigcient vectors of candidate approximate cofactor§(@f andg(X).

C; = Z(anl'r+ﬂW1'r+(W_l)ﬁn+W1"_1)/2 \/(ﬁn—l,r +,3m—1,r)82 + (#8 ><Bn+m—1,r)(b - 1)20(25
where#t& is the number of elements &1 <

Proof Lett(X) and s(X) be one of candidate approximate cofactorsf@f) and g(X), respec-
tively, satisfying|| vechw(S(X) f(X) + t(X)g(X)) I~ 0. In this case, the lattice generated by rows
of Lyw(f,9,1,¢z, &, Cg) has the following vectolicac for some integer.

Uecac = (the transpose of the cfiieient vectors of(X) andt(X), = - - - %)
WXBnim-1r

where all the correct digits are 0 on the right< B,.m-1r elements denoted by, The shortest
vector of this lattice must be smaller than or equaigg hence the LLL algorithm can find a short
vectord satisfying

dl, < 26w BroietW-DBnem10-1/2 |0 dl
< 20Br-tr 1+ 1fnem-1,~1)/2 \/(Bn—l,r +ﬁwl,r)82 + (#6 X ﬂnﬂml,r)(b - 1)2(%

since the lefBn_1; + Bm-1r €lements ofi;,c are bounded b and the erroneous digits on the right
W X Brnim-1r €lements ofi,c are bounded byb(— 1)cg.

Therefore, all the correct digits on the righitx Bn.m-1r €lements of the found short vector
must be zeros since all the non-zero correct digits on the wgt)8,.m-1r €lements of row vectors
in the lattice generated by the row vectors@fw(f,g, r,c;z, &, cg) are larger than or equal wy;
in absolute value. This means that the polynomi@fs and s(X) whose coéicient vectors are the
first Bn-1r + Bm-1r €lements ofi satisfy

|lall the correct digits of vegt(S(X) f(X) + t(X)g(X)ll= 0

hence they are candidate approximate cofactors(gf and g(X) though we may not guarantee

lIvechw(S(X) f(X) + t(X)g(X))ll~ O. 1
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Lemma 11

Let B be the same maximum in Lemriid. For the lattice generated by the row vectors of
ﬂb,w(f, 0.1, ¢4, 1, 8, &, Cg) with the followingc;, the LLL algorithm can find a short vector whose
2-nd, ..., (Br+10 + 1)-th elements are a multiple of the transpose of theffiment vector of a
candidate approximate GCD &€x) andg(X).

Cjp = 2(Br+10+1+(W=1)(Bro+Bmo) -1)/2 \/(ﬁr+1,0 + 1)B? + (#E x (Bno + Bmo)) (b — 1)20(28
where#& is the number of elements &1 <
Proof The proof is similar to that of Lemndl 1

In general, there are short vectors that are not corresponding to approximate cofactors nor
approximate GCD with small perturbations (small tolerance) hence the above lemmas can not
guarantee that our algorithm always can find such a good approximate GCD. However, in most
cases, according to our numerical experiment in Sectjahe following algorithm works well,
in which we usecs = +/Bn_1r +Bm1rB andcs = +/Bri10+ 1B for Lyw(f,g.1,¢c &, ¢c) and
f{b,w(f, 0,r,ct, s &, Cg), respectively. We again note thatis a scaling weight to make the LLL al-
gorithm do reducing more erroneous digits thanfioient digits of candidate cofactors and GCD,
as in the proofs of Lemnf@and LemmdLQ

Algorithm 12 (digits-wise approximate GCD over integers)
Input: f,g € Z[X],n = tdeg(f), m = tdeg@), b,we Z.o, Ec{0,1,...,w—1}.
Output: h,t, se€ Z[X] satisfyingf(X) ~ t(X)h(X) andg(X) ~ s(X)h(X), or “not found”.
1. ¢ « 1 and whiles < min{|lvectw(f)Il, Ivecbw(9)ll} do2-14
(or do once for the possible smallegt
2. 1« min{n,m} — 1 and whiler > 0 do3-13(or do once for = 0)
3 ¢ «— max||f||,|ldll} and construct a matrﬁb,w(f, 0,r,c,&,Ce)
4, whilec < c; do5-12(or do once foc = max{||f|l, lldll})
5 apply the LLL algorithm to the lattice generated by the row vectors of
Lb,W(f’ g.r,c, Sa CS)

6. for each basis vector sorted by the norm of rigli,m-1, columns, dor-11

7. ¢« maxX{||f|l, |ldll} and construct a matrixt,(f,9,r,C,t, S &E,Cs)

8. while ¢’ < ¢z do9-11(or do once foc’ = max||fll, llgll})

9. apply the LLL algorithm to the lattice generated by the row vectors of

7-{b,W(f’ g.r.c, t,s 8, CS)
10. leth(X), t(X), S(X) be candidate approximate GCD and cofactors,
and outpuh(x), t(X), S(X) if max{|veckw(f — th)|l, [[vecbw(g - shll} < &

11 ¢ « ¢ xmax||fll, |ldll} (or multiply some positive integer)
12. ¢ «— cxmaxX||f|,lldl} (or multiply some positive integer)

13 rer-1
14. & « &x 10 (or multiply/add some positive integer)
15. output “not found”.

Example 13
Algorithm[I2 works for polynomialsf (x1, X2) andg(x, X2) below as follows.

f(x1, %) = 15336¢ - 365Ix;x2 — 11673 — 1271X§ + 11618, — 15979
O(X1, %) = 23184] — 15094 X, + 53046« + 2425(% —1949%; + 26112
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We assume that these polynomials have a priori errors on 3heif4?) andath (4%) digits of
codficients in the basb = 4 representation (notdog,(max|| f ll, | 9llx}) = 7.85). By the
algorithm, we reduce the lattice generated by the row vectors of the following matrix Gfesi6
with c; = 69862063861742020%Ndcs = 2671636

L45(f,0,0,¢7,12,3),¢5) =

100000 6986206386174202099 1397248404198. .- 0
01000 0 0--- 0
00100 0 0--- 0
00010 0 —209586..22606297- - - 0
00001 0 0-- 0
00000 0 0--- 0
0 0 000 0-6986206386174202099 2794486808396 - - 0l
00000 0 -69862..74202099. - 0
00000 0 0-- 0
00000 0 0--- 0
00000 0 0 --- 27944825544696808396

We found the following short vectors that are sorted by the norm of right columns.

313 -41 -213 512-71 3220 0 0 0 —-320596320 —85492352 0 O--- O
165 -21 -113 272-43 1700 0 0 0 -1485429616-371357404 0 0-- O
295 -39 -203 480-73 3020 0 0 0 1301086732 325939592 0-0- O

We construct the following matrix of siz88 x 100 for the first short vector in the sté&pwith
Cj = 3997296864256278827 2Bdcs = 2181382

Hag(f,0,0,¢,t,8{2,3),ce) =

100 0 -119918..83648175: - - 0
010 0 0-- 0
001 0 0-- 0
000 0 0 --- —799459372851255765450
0 0 0 0—-399729686425627882725 1598911530900 - - 0
000 0 -39972.27882725. - 0l
000 0 0-- 0
000 0 0--- 0
000 0 0 --- 1598918745702511530900

We found the following short vectors that are sorted by the norm of right columns. We show only
short vectors having1 on their first elements as noted just after Lenfiina

151-31720000 0 -2181382 0---0
151-27720000 0 -2181382 0---0
151-29720000 0 -2181382 0---0[
149 -31 7210 0 0 0 -19632438-8725528-399729686425627882725 - 0
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Hence, we ge213x; +41x,—313and322x; — 71x,+ 512 as approximate cofactoid2x; —31x,+51
as an approximate GCD d{x1, Xo) andg(Xa1, X2), andesg = V38 ~ 6.16 in the Euclidean norm.
Moreover, the perturbation polynomials &Bex 4% — 4%) + (=3 x 42 — 2 x 4%)x, and(-3x 4% — 3x
B)xq + (2% 42 + 3x 43)%2. <

Example 14

Though the discussions above and Algoriffighare only for the case of two polynomials, it is

easy to extend them to several polynomials, using the generalized subresultant mapping (see also
[25],[18]). We show some example of the case of three polynomials below as follows.

f(x,%) = 23112 —699%X; — 6117 — 127D + 11730 — 15963
(X1, Xo) 2304¢ — 6104 X, + 38432 + 2201X — 19493, + 26224
h(X1, o) —3744C + 24724 %, + 6060 — 99512 + 12700, + 6139

We assume that these polynomials have a priori errors on2hdifl6') digits of codficients in

the basd = 16 representation (notéog, (max||f|l. |9ll, lINl«}) =~ 3.81). We construct a matrix

of size69 x 89 which is similar toLpu(f,g.r,c 7,6, Cg) with ¢; = 281670895391086458&nd

Cs = 2443811and found the following short vectors that are sorted by the norm of right columns.

-313 41 321-512 71-32 -121 -321 520 0 -5354389901--- 0
496 —-64 -512 816-112 48 192 512-80/0 0 —-2856815059--- 0
-205 29 213-336 51-16 -77 -213 360 0 -1886622092--- O |-

For the first short vector found, corresponding to candidate three cofactors, we construct a matrix
of size58 x 76 which is similar toHpw(f, 0,1, Cj, 1, 8, &, Cg) with ¢y = 3936520631318340and
Cs = 1629208and found the following short vectors that are sorted by the norm of right columns.

-151-31720000006516832000000648876240000000006--0
-151-31720000006516832000000048876240000000006--0

Hence, we geB21x; + 41x, — 313 32x; — 71x; + 512 and-52x; + 321x, + 121 as approximate
cofactors,72x; — 31x; + 51 as an approximate GCD 6(xy, X2), 9(X1, X2) andh(xy, X2), andeig4 =
V65 ~ 8.06in the Euclidean norm. Moreover, the perturbation polynomial8até!x; —4x 16" x,,
—4x 16, + 7 x 16 and5 x 16Mx, — 2 x 16 4

4 Remarks

To see the ficiency of Algorithmi12, we have generated several sets of 100 pairs of polynomials:
A pair of bivariate polynomials of total degree randomly chosen frong]j2having their GCD

of total degree randomly chosen from 8], codficients of their factors randomly chosen from
[-100 100] and added noise bivariate polynomials of the same total degree, whdseieoks are
randomly chosen from9, 9] x 10 but 0 ate probability, for randomly chosen erroneous digit
within the codficient size. For example, the following pair of polynomials is one of them Q.0
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andk = 4).

(-85 + 21xX2 + 883 + 18X5X1 — 99 X1 + 17Xy + 953 — 49%5 — 89, — 96)
X(46x1 + 92% + 47) + (8 10 + 1 x 10%%%3 — 1 x 105 + 4 x 10 %2
—-7x10°% - 6x 1O4x§x1 +8x% 10M3x — 6 X 10%%x; — 8 X 10%x
—5Xx 10%G — 7 x 10 + 7 x 100 + 7 X 10%%; — 6 x 10%),
(—85%3 + 21xX2 + 882 + 18X3X1 — 99X X1 + 17Xy + 953 — 49x5 — 89, — 96)
X(—80x; + 83X, + 62) + (=8 x 10°x] + 7 x 10%%:%3 + 5 x 100 + 9 x 10%x3x3
—6 % 10%%%3 — 5x 1002 + 8 x 10%3x; + 4 X 10M3x; — 9 x 10 %%
—4x 10%; +5x 10 — 2 x 1003 + 6 x 10°%5 — 9 x 10%%y).

We have computed their approximate GCDs by the algorithm avitHLO in the sted, r = 0in
the ste2 andc; = ¢z = 10'% andcg = 10° in the step$ and7. Note that all the experiments have
been computed by our preliminary implementation on Mathematica 8.0, and we use the max norm
for polynomials. TablBlshows the results where “#success” denotes the number of pairs for which
we got the expected digits-wise approximate polynomial GCD over integers and “#failure” denotes
otherwise. According to the result, our algorithm works well for most of pairs of polynomials.
However, the computation time is not good since the time-complexity of the lattice basis reduction
is heavily depending on the number of bases that is the number of rows of matrices in our algorithm.
Therefore, our algorithm works well but any faster algorithm is required to be used in the practical
situation.

probability 0.75 0.5 0.0
1st set| 2nd set| 1stset| 2nd set| 1st set| 2nd set
#success:#failureg 99:1 99:1 93:7 96:4 97:3 91:9

Table 1:The result of our experiments

Although we consider about only polynomials over integers in this paper, the digits-wise repre-
sentation can be extended to polynomials over reals or complexes. For example, we can construct
the Sylvester matrix of the given polynomials over reals in the digits-wise representation: dividing
mantissae of cdicients into several elements if the given polynomials do not have both of small
and large exponential parts. This may help us to treat erroneotitcez@s having errors on only
higher bits and should be studied as a further work.

The preliminary implementation on Mathematica 8.0, of our algorithm introduced in this paper
with some examples can be found at the following URLtp: //wwwmain.h.kobe-u.ac.jp/
~nagasaka/research/snap/snc2011plus.nb.
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