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Abstract

A Sudoku puzzle is a worldwide popular game, and is also an interesting object in combina-
torics and computer algebra. Recently, Inoue applied his excellent algorithm on finding the
singleton set solutions of a system of Boolean polynomial equations to the solution of the puz-
zles of Sudoku type. Further, by means of his algorithm, we have defined the Inoue invariant
of puzzles of Sudoku type, which measures the mathemati@eiudiy of them.

The purpose of this note is study the Inoue invariants of the easier puzzles of Sudoku type,
namely, 4-doku, diagonal 5-doku and diagonal 6-doku puzzles. Our main results show that
all the 4-doku and diagonal 5-doku puzzles (with a unique solution) have the trivial Inoue
invariant (21, 1) except 2 puzzles, whereas there exist many diagonal 6-doku puzzles with a
non-trivial, big Inoue invariant.

1 Introduction

A Sudoku puzzles a very popular game played by everybody in the world. Recently, numerous
researches have been done on the mathematical (combinatorial) structure of Sudoku (see, for in-
stance, the book?] and references in it). Among them, Sato, Inoue and otl®B]] studied it by
means of Boolean Groebner bases.

Quite recently, Inougd] obtained an excellent method for finding the singleton set solutions
of a system of Boolean polynomial equations. He also applied his algorithm to Sudoku and ob-
served that relatively easy Sudoku puzzles can be solved without branches (namely without "else"
procedure in Algorithm 34 o1]).
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Stimulated by his observation, we went one step further and defiree¢houe invarianiof
puzzles of Sudoku type as follows5[]. The performance of Inoue’s algorithm for a Boolean
polynomial ideal is well described by a tree diagram and we have defined the Inoue invariant of
such an ideal as the triple of the basic numbers of this tree. We discovered that, in the case of
those ideals arising from the puzzles of Sudoku type, this invariant is an excellent indicator of
the dfficulty of the puzzles by experiments. Thus we have defined the mathemaftoallti
of the puzzles of Sudoku type as the Inoue invariant of their ideals. For example, in the case of
Sudoku, the easier puzzles up to the middle level have the trivial Inoue invarjdni}2whereas
the difficult ones have a non-trivial Inoue invariant. As far as we know, the biggest Inoue invariant
so far is (964558 13), which is achieved by a 20-clues puzzle.

In this note, we study the Inoue invariants of the simpler puzzles of Sudoku type, namely 4-
doku and the diagonal 5-doku. We computed many examples of them and got a conjecture that all
the 4-doku and diagonal 5-doku puzzles with a unique solution have the the trivial Inoue invariant
(2,1,1). The purpose of this note is to give an answer to this conjecture. Our main results are
summarized as follows.

Theorem 1 (Inoue invariants of 4-doku)
All the 4-doku puzzles with a unique solution have the trivial Inoue invafarit, 1).

Theorem 2 (Inoue invariants of diagonal 5-doku)

(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.

(i) They all have the trivial Inoue invariarie, 1, 1) except the 2 puzzledi (i = 1,2), both of
which have the Inoue invariaf4, 2, 2) (see Table 5 in Section 5 fo¥, i = 1,2).

Thus our conjecture is false in the case of the diagonal 5-doku purzbleswe discovered 2
special puzzle®V (i = 1, 2) with a non-trivial Inoue invariant. We also report a partial result on the
Inoue invariants of the diagonal 6-doku puzzles, which shows that the there exist many diagonal
6-doku puzzles with a non-trivial, big Inoue invariant.

The contents of this note are as follows. In Section 2, we review Boolean Groebner bases,
especially the stratified Boolean Groebner bases. In section 3, we summarize Inoue’s algorithm
and the Inoue invariants afté3,[5]. In section 4, we formulate the rules of puzzles of Sudoku type
by a system of Boolean polynomial equations followi®y10], and we report our main results
in Section 5. In Appendix@], which is separated from the main body of this note and put in our
website, we summarize the detailed data and the programs used in the proof of our main results.

For the implementation of Inoue’s algorithm, we have used the computer algebra system Magma
[4].

Acknowledgment: we thank the referee for pointing out and correcting a critical mistake in the first
version of this note.

2 Boolean Groebner Bases

In this section, we will briefly review the Groebner bases of ideals in the polynomial ring over a
Boolean ring and the Boolean Groebner bases of ideals in a Boolean polynomial ring. For more
details on Boolean Groebner bases, 86,10, [11].

Let B be a Boolean ring. NamelB is a commutative ring with an identity such that any
elementa € B satisfiesa® = a. For example, for a natural number, (F,)™ is a finite Boolean
ring, whereF, := Z/2Z is the field with 2 elements, and the addition and multiplicatioriF)"{
are defined componentwise. Conversely, any finite Boolean ring is isomorphigtof¢r somem
by the Stone representation theorem.
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Let B[X] = B[x,...,X,] be the polynomial ring oveB with n indeterminates with a given
monomial order. For the notation on polynomials, we foll@yvds below.

Notation 3

(i) LM(f) (resp. LT(f), LC(f), mdeg())) is the leading monomial (resp. the leading term, the
leading coéicient, the multidegree) of a polynomitako thal. T(f) = LC(f)-LM(f) andLM(f) =
xmdes®) hold.

(il) For monomialsx® andx?, x* | ¥ means thax® dividesx®.

We first show the division algorithm iB[X].

Theorem 4 (Division algorithm)

Given a polynomiak and an ordered set sfpolynomialsF := (fi, ..., fs) in B[X], we get an ex-
pression of the formi = a; f1+- - - +asfs+r, wherg(ay, . . ., as) is the quotient and the remainder,
by the following algorithm:

Algorithm variables:p (intermediate dividendB = (by, ..., bs) (intermediate quotient}, (inter-
mediate remainder).

Initial values:p .= f,B:=(0,...,0),r := 0.

(i) If there existd such that M(f)) | LM(p) andLC(p) - LC(f;) # O, then take the least sutland
redefinep := p— LC(p) - g - fi andby := by + LC(p) - g3} (division step).

(ii) If there exists na such that M( f;) | LM( p) andLC(p)-LC(;) # O, then redefin@ := p—LT(p)
andr :=r + LT(p) (remainder step).

This algorithm terminates (namejy= 0) in a finite number of steps and yields an expression of
division

f=afi+---+asfs+r,

wherer satisfies the condition of the remainder= 0 or in case # 0, any termt of r satisfies
eitherLM( f;) ¥ LM(t) or LC(t) - LC(f;) = 0 in caseLM( f;) | LM(t) for anyi. Furthermore, if
a fi # 0 thenmdegé; f;) < mdeg(f) holds.

This division algorithm inB[X] is quite similar to that in the polynomial ring over a field,
except that one additional condition (the product offiiorents is not equal to 0) is necessary for
the division step to occur.

For an ideal c B[X], we denote by LT\) the set of the leading terms of the elements (except
0) in 1. We now define a Groebner basis of an ideaBjx].

Definition 5 (Groebner bases)
Letl c B[X] be an ideal an := {01,...,9s} C | a finite subset of. We sayG is a Groebner
basisof | if (LT(1)) = (LT(91),...,LT(gs)).

Based on the division algorithm, most of the result&2nGhapter 2] hold with suitable modifi-
cations. Especially, the Buchberger criterion and algorithm hold (with slight modifications) so that
we can obtain a Groebner basis of a finitely generated ideal by the Buchberger algorithm.

We next define reduced and stratified Groebner bases respectively. We deﬁgtehwre—
mainder of the division of by F.

Definition 6 (Reduced Groebner bases)
LetG be a Groebner basis of an idéaG is calledreducedif g9 = g holds for anyg € G.

Reduced Groebner bases are not unique as shown in the following example.
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Example 7
In the polynomial ring(F2)?[x] of one variable(1,0)x, (0, 1)x} and{(1,1)x} are both reduced
Groebner bases of the same ideal (X).

Definition 8 (Stratified Groebner bases)
LetG c | be a reduced Groebner bassis calleda stratified Groebner basig LM( f) = LM(g)
foranyf,ge G, f #g.

Proposition 9 (Stratification algorithm)

LetG c | be a reduced Groebner basis. Dividanto several group&,,...,G; according to
leading monomials, where each member of a group has the same leading monomidllexadtdi
groups have dierent leading monomial§$s = G, U - -- U G; (disjoint union). For each group;,
seth; := Ygeq, 9. ThenG' = {hy, ..., h} is a stratified Groebner basis lof

The following is the main theorem of the Groebner bases.

Theorem 10 (Existence and unigueness of the stratified Groebner bases)
Fix a monomial order oB[X]. For a given finitely generated iddat- B[X], a stratified Groebner
basis exists and it is determined byniquely.

For the actual computation of the stratified Groebner bases in the cBse (#,)™, we use the
"componentwise" method explained below. We first prepare some notations.

Consider the natural isomorphisiJ"[X] = (F2[x])™ and letr; : (F2[X])™ — F,[x] be the
projection to tha-th component. For any € (F2)™[x], we setf; ;= #j(f) € F,[x] and call it the
i-th component off. Then the isomorphisnFg)™[X] = (Fo[x])™ is given asF,)"[X] > f «—
(f1,..., fm) € (Fo[X])™. For anideal c (F»)™M[x], we setl; := {fi | f € I} c F[x] and call this the
i-th component ideal df.

The algorithm is based on the following theorem:

Theorem 11

Fix a monomial order offF,)"[x] and letl c (F,)"[X] be an ideal. For any (1 < i < m),
letl; c Fy[X] be thei-th component ideal of andG; the reduced Groebner basis|pf Then
G :=(G1,0...,00U(0,G5,0,...,00U---U(0,...,0,Gy) is a reduced Groebner basislptvhere
(Gy,0,...,0)={(g,0,...,0)| g Gy} etc..

Thus we can compute the stratified Groebner basisbgf Theorem 11 followed by the strati-
fication process (Proposition 9).
We now turn to the Boolean Groebner bases. SBjcg itself is not a Boolean ring, we set

B(X) = B(Xt- -, %) := B[Xq, ..., Xn] /G = Xq, ..., XE = Xn).

B(X) is a Boolean ring and we calltlhe Boolean polynomial ringverB with nindeterminates. A
monomialx;* ... X" is calleda Boolean monomiaf «; € {0, 1} for anyi. We note anyf € B(x)
can be written uniquely a%, cxX’ wherec, € B andx’« is a distinct Boolean monomial, which
we callthe canonical representation of fGiven a monomial order oB[X] and f € B(x), we can
define LT(f), LM( f) and LC(f) using the canonical representationfof

Definition 12 (Boolean Groebner bases)
Letl c B(X) be an ideal an€ := {gi1,...,9s} C | a finite subset of. We sayG is a Boolean
Groebner basiga BG basis for short) df if (LT(1)) = (LT(9y),...,LT(gs)).
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The division algorithm (Theorem 4) works alsoBiix) and we can define reduced and stratified
BG bases as in Definition 6 and 8. Then the existence and uniqueness of the stratified BG bases
hold too. We abbreviate the stratified BG basethasSBG baseis the following sections.

We can compute a BG basis of the idéal (F) c B(x) as follows. Compute a Groebner basis
Gof (FU X = Xq,..., X2 = Xa}y in B[X]. ThenG’ := G\ {}¢ — xy,..., X2 — Xy} is @ BG basis of.
Furthermore, ifG is stratified, therG’ is also stratified. We note that the componentwise method
(Theorem 11) also works for the BG bases.

We finally refer to the Boolean Hilbert Nullstellensatz. For an idealB(X), letV(l) := {a e
B"| f(a) = 0 for anyf € I} be the #ine variety defined by.

Theorem 13 (Boolean Hilbert Nullstellensatz)

Letl c B(X) be a finitely generated ideal. Then the following assertions hold.
() V(1) = ¢ if and only ifl contains a non-zero constant.

(i) AssumeV (1) # ¢. Thenf(x) € | ifand only if f(a) = O for anya € V(I).

3 The Inoue algorithm and the Inoue invariants

In this section, we will briefly review the Inoue algorithm and the Inoue invariaBis5[). The
Inoue algorithm is an excellent and almost canonical method for computing the singleton set solu-
tions of a system of Boolean polynomial equations.

We work in the Boolean polynomial ringf§)™(x) = (F2)™(X,...,X%n). For an ideall c
(F2)M(x), we set

Vs(l) :={(az.....an) | & €{er.....en}), f(as,...,an) =0 foranyf elj,

,,,,,

this set.
The Inoue algorithm is based on the conaptost solution polynomialsontained in the ideal.
In the following, we seE := Y, & = L,

Definition 14 (Solution polynomial)
We callf € (F)™(x) of the formf := E - Xj + & = X; + & for somej, k a solution polynomial

We note that for a solution polynomidl:= x; + &, f = 0 is equivalent tox; = &. We next
define an almost solution polynomial.

Definition 15 (Almost solution polynomial)

(i) A polynomial f(X) € (F2)™(X) is calledan almost solution polynomial of type(ASP of type 1

for short) if there exis§, k such thaty - f(X) = & - X; + & (namely,f(X) = Xj + 1 wherefy is the
k-th component of ). We callSol(f) := x; + & the solution polynomial associated to the ASP f
We require a solution polynomial to be excluded from the ASP'’s of type 1.

(i) A polynomial g(x) € (F2)™(X) is calledan ASP of type X there existj, k such that - g = & - X;

for anyt exceptk (namely,gi(X) = x; for anyt exceptk). We callSol(@) := X; + & the solution
polynomial associated to.gWe require a solution polynomial to be excluded from the ASP’s of

type 2.

Supposef is an ASP of type 1 with its solution polynomial S6)(= x; + &. Thenf =0
implies that thek-th component of the variable is 1. Thusx; must be equal te since we are
computingVs(l). But note thatf = 0 is not equivalent t; = &. A similar reasoning holds for
ASP of type 2.

We prepare some notations for the Inoue algorithm.
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Notation 16

Letl c (F,)™(X) be an ideal.

(i) CONST(1) := the set of non-zero constants containetl.in

(i) SP() := the set of solution polynomials contained inFor a variable;, if a solution polyno-
mial f = x; + & is contained irbP(), then we say the variabig is determined (with the valus).

(iif) ASP(1):= the set of ASP'’s (of type 1 or 2) in

(iv) Sol(ASR1)) := {Sol(f) | f € AS(l)} = the set of solution polynomials associated to ASP’s
contained in .

The following algorithm ASPTransform is the main part of the Inoue algorithm.

Algorithm 17 (ASPTransform)

Let| be an ideal (Input).

(i) If CONST() # ¢, then the output ASPTransforhj(s |.

(ii) If CONST() = ¢, then redefind := | + (Sol(ASP())). Namely, add td all the solution
polynomials associated to the ASP’slinThen go to (i) again.

(iii) Repeat this process untdONST() # ¢ or ASP() = ¢, and the output ASPTransforhj(is .

Now we can state the Inoue algorithm.

Algorithm 18 (The Inoue algorithm)
Fix a linear order on the set of variables, . . ., X,} (not a monomial order). Ldtc (F,)™(X) be
an ideal (input). Sdt .= {} (empty set). We will put a singleton set solutiorLirin order.
(i) If CONST() # ¢, then set. := L U {}.
(ii) If CONST() = ¢, then redefiné := ASPTransformi().
(i) If CONST() # ¢, thenL := LU {}. If CONST() = ¢ , we have 2 cases. (a)HP() consists
of n solution polynomials (namely = (x; + e, | j = 1,...,n) ) so that all the variables are
determined, theh := L U{SP()} (this is a solution). (b) Else let, be the least variable among the
undetermined ones ané, . . ., &} the possible values of. Hereeg is a possible value of; if
and only ifCONST( + (xj + &¢)) = ¢. Foreach (L <| < p), redefind :=| + (x; + &) and go to
(ii).
(iv) The final outputnoue() = L.

The following theorem makes it possible to rephrase the Inoue algorithm in terms of SBG bases
instead of ideals.

Theorem 19

Let| be an ideal ifF,)™(X) andG its SBG basis for a given monomial order. In the assertions (ii),
(i) below, we assumé does not contain non-zero constants.

(i) For a non-zero constante (F,)™, c e | ifand only ifc € G.

(i) For a solution polynomiaf, f € | ifand only if f € G.

(iif) Ifan ASP g is in |, then there exists an ASP € G such thatol(g) = Sol@).

The assertion (iii) of Theorem 19 above is the main result (Theorem 3Bj.oBfy Theorem
19, we can rephrase the Inoue Algorithm in terms of SBG bases instead of ideals. Namely, just
replace the idedl by its SBG basi€ in Algorithms 17 and 18.

For the actual implementation of this algorithm, we also need the explicit classification of
ASP’s contained in an SBG basis (s&eCorollary 3.9]). Inoue has implemented his algorithm on
the computer algebra system Rissir, whereas we have implemented it on the computer algebra
system Magméll].

We next define the Inoue invariant of an ideéat (F)™(x). The performance of the Inoue
algorithm is well described by a tree diagram defined as below.
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Definition 20 (Inoue Invariant)
Let| be an ideal and perform the Inoue algorithm starting ftome will construct a tree Trek(
of | as follows:
(i) | is the first node (root).
(ii) When the algorithm ASPTransform stops, we have a second node.
(iii) There are three cases. (a) If at this n@®NST() # ¢, we have reached a terminal node (non-
solution leaf). (b) IICONST() = ¢ and all then variables are determined, then we have reached
a terminal node (a solution leaf). (c)ONST() = ¢ and there are undetermined variables, then
select the least undetermined variakje If there arep possible valuese,, ..., &} for x;, then
this tree branches ip directions at this node.
(iv) Repeat this process until all the branches reach a (solution or non-solution) leaf.

By the process above, we get a tree Trgd(Ve sell; = i{nodes, |, := #{leave$ andl; := the
depth of Tred() and call the tripléno(l) := (I4, |5, 13) the Inoue invariant of the ideal |

For the comparison of two Inoue invariants, we use lex order temporarily. The Inoue invariant
measures the complexity of computation of the singleton set soluti§@3$ by the Inoue algorithm
and is a very subtle invariant of

Example 21

Supposd(VS(1)) = 1. In case the Inoue algorithm calls ASPTransform only once and we reach
the unique solution at once, then Trgdg the simplest tree with 2 nodes, 1 leaf and depth 1 (see
Figure 1 below). In this case, we skyas a trivial Inoue invariar{e, 1, 1).

Fig. 1: The simplest tree with Ind) = (2,1, 1)

root
solution

leaf

4 Formulation of puzzles of Sudoku type by a system of Boolean
polynomial equations

In this section, we formulate the rules of the puzzles of Sudoku type in terms of Boolean polynomial
equations afteid, [10].

A Sudoku puzzles a partially-filled 9x 9 square board with the integers2]...,9, which
should be completed in such a way that every row, column and the designat8doBck (see
Table 1 below) is filled with no repeated entries.

We study the simpler versions of Sudoku, namely 4-doku, diagonal 5-doku and diagonal 6-
doku puzzlesA 4-doku puzzles a partially-filled 4x 4 square board with integers2 3, 4. Every
row, column and X 2 block of the board should be filled with no repeated entries.

A diagonal 5-doku puzzie a partially filled 5x 5 table, where each row, column and diagonal
(there are two diagonals) should be filed with numbers.15 ( no repeated entries). Since there
are no blocks in 5-doku, it is natural to impose the diagonal conditions.

A diagonal 6-doku puzzis a partially filled 6x 6 table, where each row, columnx23 block
and diagonal should be filled with numbers 1,6 (no repeated entries). Note that there are six
2 x 3 rectangular (not square) blocks (see Table 2 below).
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Table 1:An example of Sudoku puzzles

A Sudoku puzzle (clues) The solution board
3 9 178]5[2[7[3]6[9]4
2 5 2/3/4]|6|5(9|1]|7|8
6 9/6|7]|1|8|4|3]|2]|5
2 — 47176328957
7 8/5/2]|7|9|6|4]3]1
913 8 71913|4|1|/5|2|8|6
819 1 57278191411 7]6[3
6 5 2 6/4/9]|8|3|7|5]|1]2
4 3|/7]1]|5|/6|2|8|4]9

Table 2:An example of a diagonal 6-doku puzzle

A puzzle (clues) The solution board
17213456
4116|5213

= 3172|564

1 654|321

5 2 513[1]6]4]2
6 3 2/4]6]1|3|5

Since the formulation of the rules of these puzzles by a system of Boolean polynomial equations
are similar, we take 4-doku puzzles for simplicity and formulate their rules.

Table 3:Assignment of 16 variables

a1 | d12 | 13 | A4
Ao | Q2 | Q3 | A4
31 | @32 | A3 | A4
A1 | Qa2 | Q43 | Qs

We first assign 16 variables, 1, a;o,...,844 as in Table 3. We then consider the Boolean
polynomial ring F)*(ai1, a12. . ., ass) With lex ordera;; < a;p < --- < ass. We abbreviate as
0=1(0,0,0,0),1=(1,1,1,1) and sek; := (1,0,0,0),& := (0,1,0,0) etc.. Let us take the first
row. Then the 7 equations below express the rules of 4-doku for the first row:

a11+a12+a13+a14+1=0 (1)
a1 -ap=0,a11-a13=0,a11-a14 = 0,850 - a13=0,810- s = 0,a13- 414 =0 (2

For example, &11, a12, 213, a14) = (€1, &, €3, €4) Satisfies these equations. We note that there are
lots of solutions inl,)* other than this. For exampleasg, ai2, 13, a14) = (0, €1 + €, €3, &) is also
a solution, which of course is not admissible as a solution for 4-doku puzzles.

There are 4 rows, 4 columns and 4 blocks so that there:afd% 84 equations (or generators
of an ideal) in all. Adding the clues (initial values) to the above generators, we can represent the
rules of 4-doku puzzles by Boolean polynomials. We call the ideal generated by the above 84
polynomials together with the cluéise ideal of the given 4-doku puzzle
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Let S be a puzzle of Sudoku type andts ideal. In B], we have defined the mathematical
difficulty of S as Ino(), which is supported by experimental data.

5 Main results

In this section, we state our main results and give the outlines of their proofs. For more details, see
Appendix [6]. We first need a definition.

Definition 22 (Redundant and irredundant puzzles)

LetS be a puzzle of Sudoku type with a unique solution. If the deletion of any one numbeBfrom
yields a puzzle which has more than one solution, weSs&an irredundant puzzleA puzzie is
calledredundantif S is not irredundant.

The following proposition lessens the amount of computation very much.

Proposition 23

LetS be a redundant puzzle of Sudoku type with a unique solutionSarpuzzle with several
numbers deleted froB. We assumé&’ still has a unique solution. If the Inoue invariant®fis
trivial, then that ofS is trivial too.

Proof Letl (resp. I’) be the ideal of the puzzI8 (resp. S’). Suppose we are applying the
Inoue algorithm td’. Since the Inoue invariant df is trivial, we reach the unigue solution by
applying ASPTransform once. Since we hdve 1’ it holds that ASP() > ASP(’),SP() o>
SP(’), Sol(ASP()) > Sol(ASP(")).

Thus we have the following diagram:

=15 ¢ 1=l
N
I, <
N N
N N
Y= c Ik

Herel} (resp.l;) is the ideal obtained by adding kp ; (resp.l;,) all the solution polynomials
associated to the ASP’s contained ]r_11 (resp.lj-1). Furtherd” = ASPTransformi(’) is the ideal
which is a solution leaf (hamely contains the solution polynomials of all the variables and does
not contain non-zero constants).

We show thatl also is the solution leaf. Indeed, singec Iy, Ik also contains the solution
polynomials of all the variables. Furthdg, does not contain non-zero constants. Indeedl, if
contains a non-zero constant, théfly) = ¢ andl (namely the puzzI8) does not have a solution, a
contradiction to the assumption. Thiysatisfies the two conditions of the solution leaf. Therefore,
starting froml, we reach a solution ledf by one ASPTransform without branching, which means
that the Inoue invariant & is trivial. ]

The following is the first main result of this note.

Theorem 24 (Inoue invariants of 4-doku)
Any 4-doku puzzle with a unique solution has the trivial Inoue invar@s, 1).
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Proof In the case of 4-doku, the irredundant puzzles (with a unique solution) exist only if the
number of clues is 4,5,64]). Hence, by Proposition 23, it is enough to see that the Inoue invariant
of the puzzles (with a unique solution) with 4,5,6 clues is trivial.

Further, there exist only 2 essentiallyfdrent (namely dferent modulo the action of the 4-
doku symmetry group) solution boards as shown in Tabl&}: ([

Table 4:The essentially dierent 2 solution boards

No.1 No.2
112134 11234
3141112 314112
21114713 2131411
413121 411]12)|3

Now, let S be a 4-doku puzzle wittk (k = 4,5,6) clues with a unique solutiol. By a
suitable 4-doku symmetry transformation, we may asstiniséNo.1 or No.2 above. Itis immediate
to check that all the puzzles with a unique solution obtained by delétfhg 10,11, 12) cells
from these 2 solution boards have the trivial Inoue invariant by a computation with Magma (see
Appendix |6, Section 1]). Thus our theorem is proved. ]

We now turn to the diagonal 5-doku puzzles. We first enumerate the essentiihei solu-
tion boards of diagonal 5-doku.

Let S5 be the symmetric group of degree 5 ang the dihedral group of order 8D, is the
symmetry group of the square with center at the origin. We noteSkatcts on the seX of the
solution boards of the diagonal 5-doku as the permutation of numBaralso acts naturally on
X and actually,Ss x Dy is the symmetry group of the diagonal 5-doku. The following theorem
classifies the seX of solution boards modulo the action 8§ x Dj,.

Theorem 25 (Essentially dfferent solution boards of diagonal 5-doku)
There are only three fferent solution boards modu®y x D4-action as shown below.

NSB No.1 NSB No.3 NSB No.6
T12]3]4]5 T12]3]4]5 T12]34]5
245|331 34512 45231
5/3/2|1|4 51234 53412
3/1(4[5]2 2(3[4[5]1 3/1](5|2]4
45123 4(5[1]|2]3 2(4[1|5]3

For the proof of Theorem 25, we first consider oBlraction, forgettingD4-action.

Definition 26 (Normalized solution boards of diagonal 5-doku)
A normalized solution board (NSB for short) is the one such that the first row is givewm by
Lap=2a3=3 a4=4a5=5.

We note that each equivalence class of solution boards und&sthetion contains a unique
normalized solution board.

Proposition 27 (8 NSB'’s of diagonal 5-doku)
There are exactly 8 normalized solution boards as shown below.
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wn
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wn
vs]
pd
wn
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pd

0 0. 0. 0

N 1 N 2 N 3 N A4
11231415 11231415 172131415 17231415
214|531 2154113 314|512 3/5(2|1]4
5/3|2]1]|4 413|2|5]|1 5/1/2|3]|4 5/1]4|3|2
3/1(4|5|2 5/4(1|3|2 213|451 413]5|2]|1
4151|283 3/1|5(2]|4 4151|123 2|14(1]5]|3

NSB No.5 NSB No.6 NSB No.7 NSB No.8
172131475 172131475 172314715 17231415
4/5(1]2|3 4151231 5/3|1]2]|4 5|/3(4]1]|2
213|451 5/13|4]1]|2 2|5|1413]|1 4151231
5/1|2|3]|4 3/11|5|2]|4 411|12|5]|3 2141153
314|512 2141153 314|512 3/1(5|2]|4

Proof Letl be the ideal of the puzzle with the initial conditiam = 1,812 = 2,813 = 3,14 =
4,35 = 5. Then we get the desired 8 solution boards by applying the Inoue solver (algorithm) to
(see Appendix®, Subsection 2.1]). ]

Proof of Theorem 25. If we transform the 8 NSB’s with thg-action and then normalize, it is
easy to check that there are 3 orbifdp.1, 2, 4, 7}, {N0.3, 5}, {N0.6, 8}. Thus NSB No.1,3,6 are the
complete representatives of the solution boards uSgerD, action. ]

We next enumerate the diagonal 5-doku puzzles with a unique solution.

Theorem 28 (Number of the diagonal 5-doku puzzles with a unique solution)

(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.

(ii) The irredundant puzzles exist only if the number of clues is 4,5,6, and the number of them is
7639680 in all.

Proof (i) LetS be a diagonal 5-doku puzzle with a unique solutionBy a suitable transfor-
mation, we may assunie is one of the three NSB’s in Theorem 25. Now, by a time-consuming
computation by Magma (see Append®; [Subsection 2.2]), we find that the number of puzzles
which has the NSB No.1 (resp. No.3, No.6) as the unique solution is 32258030 (resp. 32246636,
32256282). Thus there are

(32258030« 4 + 32246636x 2 + 32256282« 2) x 5! = 30964554720

puzzles with a unique solution in all. Note that we do not takeShg Dj-action into account for

this enumeration.

(i) By a similar computation as in (i), we can check that there are no irredundant puzzles which
have NSB No.1, No.3, No.6 as a unique solution vkittlues k > 7). Also there are exactly 7996

(resp. 7920, 7920) irredundant puzzles which has No.1 (resp. No.3, No.6) as a unique solution (see
Appendix B, Subsection 2.2]). Thus there are

(7996x 4 + 7920x 2 + 7920x 2) x 5! = 7639680
irredundant puzzles in all. ]
We have a following impressive corollary.

Corollary 29 (The number of minimal and maximal clues of diagonal 5-doku)
(i) The minimal number of clues of the diagonal 5-doku puzzles with a unique solution is 4.
(if) The maximal number of the clues of the irredundant ones is 6.
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Remark 30

(i) Theorem 28 is significant in itself since this kind of precise enumeration seems to be known
only for 4-doku so far @]).

(i) To accomplish the computation for Theorem 28, we spent about a month using several Windows
PC'’s simultaneously.

The following theorem is our second main result.

Theorem 31 (Inoue invariants of diagonal 5-doku)
All the diagonal 5-doku puzzles with a unique solution have the trivial Inoue invariant except the
following two puzzledhN,, W, (moduloSsxDg4-action). These two have the Inoue invarighe, 2).

Table 5:The diagonal 5-doku puzzles with the non-trivial Inoue invarian2(2)
wi

W2
(1] | [4]5] I T
4
3|1 5 3|1
415

Proof By Theorem 28 (ii), the irredundant diagonal 5-doku puzzles exist only if the number of
cluesis 45, 6.

Now, letS be a puzzle wittk (k = 4, 5, 6) clues with a unique solutioh. By a suitable 5-doku
symmetry transformation, we may assuimés one of the 3 NSB’s in Theorem 25. We can check
that all the puzzles with a unique solution obtained by deldtithg- 19, 20, 21) cells from these 3
solution boards have the trivial Inoue invariant excéfgtandW, by a computation with Magma
(see Appendix, Subsection 2.3]).

Furthermore, if we add any number contained in the solution boaid tandW, it is easy to
check that the resulting puzzles all have the trivial Inoue invariant. Thus by Proposition 23, we are
done. ]

Remark 32

We note that\; (i = 1,2) has 6 clues, whereas the minimal number of clues of the puzzles with
a unique solution is 4. Since it is natural to expect that the fewer the clues, the rfimgltdihe
puzzles are, this is an interesting phenomenon.

We finally report a partial result on the Inoue invariants of the diagonal 6-doku puzzles, whose
proof we omit since it is similar to that of Theorem 31.

Theorem 33 (Inoue invariants of diagonal 6-doku restricted to the 5-clues case)

(i) The minimal number of clues of the diagonal 6-doku puzzles with a unique solution is 5.

(ii) There exist exactly 44542080 puzzles with 5 clues which have a unique solution. Among them,
there exist 10540800 puzzles with a non-trivial Inoue invariant. The biggest Inoue invariant of
them is(20, 12, 5), and the puzzle with this Inoue invarid20, 12, 5) is the following one in Table

6.
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Table 6:The diagonal 6-doku puzzle with 5 clues with the biggest Inoue invarianfl@28)

ogjo oo 510

Remark 34
(i) As Theorem 33 shows, there are many diagonal 6-doku puzzles with a non-trivial Inoue invariant
unlike 4-doku and diagonal 5-doku puzzles, even restricted to the case of minimal 5 clues.

We also note that, as seen from the case of diagonal 5-doku puzzles, the number of clues of the

puzzle with the biggest Inoue invariant may be larger than the minimal number of clues (Remark
32). Hence it may well happen that the diagonal 6-doku puzzle with the biggest Inoue invariant
(unknown so far) hap clues where > 5.
(ii) The reason that Theorem 33 refers only to the case of 5 clues is that it takes too much time
for this computation. We estimate that it will take several years (maybe more) to achieve the same
computation for all the number of clues. Thus, in the case of diagonal 6-doku, we have not obtained
a complete result as in the case of diagonal 5-doku.
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