COMMUNICATIONS OF
JAPAN SOCIETY FOR SYMBOLIC AND
ALGEBRAIC COMPUTATION R\ 8:

ISBN978-4-903027-28-9

Aims and Scope:

Communications of JSSAC (Japan Society of Symbolic and Algebraic Computations) is dedicated
to researchers who have a special interest in symbolic and algebraic computation. Communica-
tions of JSSAC publishes original articles dealing with every aspect of symbolic and algebraic
computation.

Research Areas Include but are not limited to:

O Theoretical and algorithmic issues of symbolic and algebraic computation

O Design and implementation of symbolic and algebraic computation systems

O Applications of symbolic and algebraic computation in education, science, engineering and in-
dustry, pure mathematics, etc.

Legal Requirements:
In order to submit a manuscript, at least one of the author(s) should be a member of JSSAC in
principle

Manuscript Submission:

A manuscript must be written in English.

It also should be written in Latex.

A submission must include:

(1) a latex source file

(2) a dvi, ps or pdf file of (1)

(3) a title of the paper as well as the name(s) afiiliaion(s) and mailing address(es) of the
author(s)

(4) an abstract (no more than 150 words) and key words (5 or less)

For full and complete guide for authors, please refer to the following sites.

httpy/www.jssac.orgeditor/Styleg/index.html (in Japanese)
httpy/www.jssac.orgeditor/Stylgindex-e.html (in English)

Every submitted manuscript will undergo a standard review process and the acceptance for pub-
lication by the editorial board will be based on its originality, significance of contribution and its
relevance to the scope of Communications of JSSAC.

Miscellaneous:
O The copyright of a published paper is transferred to JSSAC.
O Communications of JSSAC has no page charges.

Contents

On the Inoue invariants of the puzzles of Sudoku type
Tetsuo Nakano , Kenji Arai, Hiromasa Watanabe — 1

Approximate Polynomial GCD over Integers with Digits-wise Lattice
Kosaku Nagasakao 15
Practice of Drawing Graphs of Implicit Functions of Three Variables
Noriko Hyodo , Yuji Kondoh , Hirokazu Murao , Tomokatsu Saito ,
Tadashi Takahashi

33

© 2016 Japan Society for Symbolic and Algebraic Computation

Communications of JSSAC (2016)
Vol. 2,pp.1-14

On the Inoue invariants of the puzzles of Sudoku type

Tetsuo Nakario

Graduate School of Science and Engineering, Tokyo Denki University

Kenji Arai

Graduate School of Science and Engineering, Tokyo Denki University

Hiromasa Watanabe

Graduate School of Science and Engineering, Tokyo Denki University

(Recervep 29Mar/2013 Acceptep 13/Sep1/2014)

Abstract

A Sudoku puzzle is a worldwide popular game, and is also an interesting object in combina-
torics and computer algebra. Recently, Inoue applied his excellent algorithm on finding the
singleton set solutions of a system of Boolean polynomial equations to the solution of the puz-
zles of Sudoku type. Further, by means of his algorithm, we have defined the Inoue invariant
of puzzles of Sudoku type, which measures the mathemati@eiudiy of them.

The purpose of this note is study the Inoue invariants of the easier puzzles of Sudoku type,
namely, 4-doku, diagonal 5-doku and diagonal 6-doku puzzles. Our main results show that
all the 4-doku and diagonal 5-doku puzzles (with a unique solution) have the trivial Inoue
invariant (21, 1) except 2 puzzles, whereas there exist many diagonal 6-doku puzzles with a
non-trivial, big Inoue invariant.

1 Introduction

A Sudoku puzzles a very popular game played by everybody in the world. Recently, numerous
researches have been done on the mathematical (combinatorial) structure of Sudoku (see, for in-
stance, the book?] and references in it). Among them, Sato, Inoue and otl®B]] studied it by
means of Boolean Groebner bases.

Quite recently, Inougd] obtained an excellent method for finding the singleton set solutions
of a system of Boolean polynomial equations. He also applied his algorithm to Sudoku and ob-
served that relatively easy Sudoku puzzles can be solved without branches (namely without "else"
procedure in Algorithm 34 o1]).

*tnakano@mail.dendai.ac.jp
This work was supported by JSPS KAKENHI (23540057).

© 2016 Japan Society for Symbolic and Algebraic Computation

2 Communications of JSSAC Vol. 2

Stimulated by his observation, we went one step further and defiree¢houe invarianiof
puzzles of Sudoku type as follows5[]. The performance of Inoue’s algorithm for a Boolean
polynomial ideal is well described by a tree diagram and we have defined the Inoue invariant of
such an ideal as the triple of the basic numbers of this tree. We discovered that, in the case of
those ideals arising from the puzzles of Sudoku type, this invariant is an excellent indicator of
the dfficulty of the puzzles by experiments. Thus we have defined the mathemaftoallti
of the puzzles of Sudoku type as the Inoue invariant of their ideals. For example, in the case of
Sudoku, the easier puzzles up to the middle level have the trivial Inoue invarjdni}2whereas
the difficult ones have a non-trivial Inoue invariant. As far as we know, the biggest Inoue invariant
so far is (964558 13), which is achieved by a 20-clues puzzle.

In this note, we study the Inoue invariants of the simpler puzzles of Sudoku type, namely 4-
doku and the diagonal 5-doku. We computed many examples of them and got a conjecture that all
the 4-doku and diagonal 5-doku puzzles with a unique solution have the the trivial Inoue invariant
(2,1,1). The purpose of this note is to give an answer to this conjecture. Our main results are
summarized as follows.

Theorem 1 (Inoue invariants of 4-doku)
All the 4-doku puzzles with a unique solution have the trivial Inoue invafarit, 1).

Theorem 2 (Inoue invariants of diagonal 5-doku)

(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.

(i) They all have the trivial Inoue invariarie, 1, 1) except the 2 puzzledi (i = 1,2), both of
which have the Inoue invariaf4, 2, 2) (see Table 5 in Section 5 fo¥, i = 1,2).

Thus our conjecture is false in the case of the diagonal 5-doku purzbleswe discovered 2
special puzzle®V (i = 1, 2) with a non-trivial Inoue invariant. We also report a partial result on the
Inoue invariants of the diagonal 6-doku puzzles, which shows that the there exist many diagonal
6-doku puzzles with a non-trivial, big Inoue invariant.

The contents of this note are as follows. In Section 2, we review Boolean Groebner bases,
especially the stratified Boolean Groebner bases. In section 3, we summarize Inoue’s algorithm
and the Inoue invariants afté3,[5]. In section 4, we formulate the rules of puzzles of Sudoku type
by a system of Boolean polynomial equations followi®y10], and we report our main results
in Section 5. In Appendix@], which is separated from the main body of this note and put in our
website, we summarize the detailed data and the programs used in the proof of our main results.

For the implementation of Inoue’s algorithm, we have used the computer algebra system Magma
[4].

Acknowledgment: we thank the referee for pointing out and correcting a critical mistake in the first
version of this note.

2 Boolean Groebner Bases

In this section, we will briefly review the Groebner bases of ideals in the polynomial ring over a
Boolean ring and the Boolean Groebner bases of ideals in a Boolean polynomial ring. For more
details on Boolean Groebner bases, 86,10, [11].

Let B be a Boolean ring. NamelB is a commutative ring with an identity such that any
elementa € B satisfiesa® = a. For example, for a natural number, (F,)™ is a finite Boolean
ring, whereF, := Z/2Z is the field with 2 elements, and the addition and multiplicatioriF)"{
are defined componentwise. Conversely, any finite Boolean ring is isomorphigtof¢r somem
by the Stone representation theorem.

Communications of JSSAC Vol. 2 3

Let B[X] = B[x,...,X,] be the polynomial ring oveB with n indeterminates with a given
monomial order. For the notation on polynomials, we foll@yvds below.

Notation 3

(i) LM(f) (resp. LT(f), LC(f), mdeg())) is the leading monomial (resp. the leading term, the
leading coéicient, the multidegree) of a polynomitako thal. T(f) = LC(f)-LM(f) andLM(f) =
xmdes®) hold.

(il) For monomialsx® andx?, x* | ¥ means thax® dividesx®.

We first show the division algorithm iB[X].

Theorem 4 (Division algorithm)

Given a polynomiak and an ordered set sfpolynomialsF := (fi, ..., fs) in B[X], we get an ex-
pression of the formi = a; f1+- - - +asfs+r, wherg(ay, . . ., as) is the quotient and the remainder,
by the following algorithm:

Algorithm variables:p (intermediate dividendB = (by, ..., bs) (intermediate quotient}, (inter-
mediate remainder).

Initial values:p .= f,B:=(0,...,0),r := 0.

(i) If there existd such that M(f)) | LM(p) andLC(p) - LC(f;) # O, then take the least sutland
redefinep := p— LC(p) - g - fi andby := by + LC(p) - g3} (division step).

(ii) If there exists na such that M(f;) | LM(p) andLC(p)-LC(;) # O, then redefin@ := p—LT(p)
andr :=r + LT(p) (remainder step).

This algorithm terminates (namejy= 0) in a finite number of steps and yields an expression of
division

f=afi+---+asfs+r,

wherer satisfies the condition of the remainder= 0 or in case # 0, any termt of r satisfies
eitherLM(f;) ¥ LM(t) or LC(t) - LC(f;) = 0 in caseLM(f;) | LM(t) for anyi. Furthermore, if
a fi # 0 thenmdegé; f;) < mdeg(f) holds.

This division algorithm inB[X] is quite similar to that in the polynomial ring over a field,
except that one additional condition (the product offiiorents is not equal to 0) is necessary for
the division step to occur.

For an ideal c B[X], we denote by LT\) the set of the leading terms of the elements (except
0) in 1. We now define a Groebner basis of an ideaBjx].

Definition 5 (Groebner bases)
Letl c B[X] be an ideal an := {01,...,9s} C | a finite subset of. We sayG is a Groebner
basisof | if (LT(1)) = (LT(91),...,LT(gs)).

Based on the division algorithm, most of the result&2nGhapter 2] hold with suitable modifi-
cations. Especially, the Buchberger criterion and algorithm hold (with slight modifications) so that
we can obtain a Groebner basis of a finitely generated ideal by the Buchberger algorithm.

We next define reduced and stratified Groebner bases respectively. We deﬁgtehwre—
mainder of the division of by F.

Definition 6 (Reduced Groebner bases)
LetG be a Groebner basis of an idéaG is calledreducedif g9 = g holds for anyg € G.

Reduced Groebner bases are not unique as shown in the following example.

4 Communications of JSSAC Vol. 2

Example 7
In the polynomial ring(F2)?[x] of one variable(1,0)x, (0, 1)x} and{(1,1)x} are both reduced
Groebner bases of the same ideal (X).

Definition 8 (Stratified Groebner bases)
LetG c | be a reduced Groebner bassis calleda stratified Groebner basig LM(f) = LM(g)
foranyf,ge G, f #g.

Proposition 9 (Stratification algorithm)

LetG c | be a reduced Groebner basis. Dividanto several group&,,...,G; according to
leading monomials, where each member of a group has the same leading monomidllexadtdi
groups have dierent leading monomial§$s = G, U - -- U G; (disjoint union). For each group;,
seth; := Ygeq, 9. ThenG' = {hy, ..., h} is a stratified Groebner basis lof

The following is the main theorem of the Groebner bases.

Theorem 10 (Existence and unigueness of the stratified Groebner bases)
Fix a monomial order oB[X]. For a given finitely generated iddat- B[X], a stratified Groebner
basis exists and it is determined byniquely.

For the actual computation of the stratified Groebner bases in the cBse (#,)™, we use the
"componentwise" method explained below. We first prepare some notations.

Consider the natural isomorphisiJ"[X] = (F2[x])™ and letr; : (F2[X])™ — F,[x] be the
projection to tha-th component. For any € (F2)™[x], we setf; ;= #j(f) € F,[x] and call it the
i-th component off. Then the isomorphisnFg)™[X] = (Fo[x])™ is given asF,)"[X] > f «—
(f1,..., fm) € (Fo[X])™. For anideal c (F»)™M[x], we setl; := {fi | f € I} c F[x] and call this the
i-th component ideal df.

The algorithm is based on the following theorem:

Theorem 11

Fix a monomial order offF,)"[x] and letl c (F,)"[X] be an ideal. For any (1 < i < m),
letl; c Fy[X] be thei-th component ideal of andG; the reduced Groebner basis|pf Then
G :=(G1,0...,00U(0,G5,0,...,00U---U(0,...,0,Gy) is a reduced Groebner basislptvhere
(Gy,0,...,0)={(g,0,...,0)| g Gy} etc..

Thus we can compute the stratified Groebner basisbgf Theorem 11 followed by the strati-
fication process (Proposition 9).
We now turn to the Boolean Groebner bases. SBjcg itself is not a Boolean ring, we set

B(X) = B(Xt- -, %) := B[Xq, ..., Xn] /G = Xq, ..., XE = Xn).

B(X) is a Boolean ring and we calltlhe Boolean polynomial ringverB with nindeterminates. A
monomialx;* ... X" is calleda Boolean monomiaf «; € {0, 1} for anyi. We note anyf € B(x)
can be written uniquely a%, cxX’ wherec, € B andx’« is a distinct Boolean monomial, which
we callthe canonical representation of fGiven a monomial order oB[X] and f € B(x), we can
define LT(f), LM(f) and LC(f) using the canonical representationfof

Definition 12 (Boolean Groebner bases)
Letl c B(X) be an ideal an€ := {gi1,...,9s} C | a finite subset of. We sayG is a Boolean
Groebner basiga BG basis for short) df if (LT(1)) = (LT(9y),...,LT(gs)).

Communications of JSSAC Vol. 2 5

The division algorithm (Theorem 4) works alsoBiix) and we can define reduced and stratified
BG bases as in Definition 6 and 8. Then the existence and uniqueness of the stratified BG bases
hold too. We abbreviate the stratified BG basethasSBG baseis the following sections.

We can compute a BG basis of the idéal (F) c B(x) as follows. Compute a Groebner basis
Gof (FU X = Xq,..., X2 = Xa}y in B[X]. ThenG’ := G\ {}¢ — xy,..., X2 — Xy} is @ BG basis of.
Furthermore, ifG is stratified, therG’ is also stratified. We note that the componentwise method
(Theorem 11) also works for the BG bases.

We finally refer to the Boolean Hilbert Nullstellensatz. For an idealB(X), letV(l) := {a e
B"| f(a) = 0 for anyf € I} be the #ine variety defined by.

Theorem 13 (Boolean Hilbert Nullstellensatz)

Letl c B(X) be a finitely generated ideal. Then the following assertions hold.
() V(1) = ¢ if and only ifl contains a non-zero constant.

(i) AssumeV (1) # ¢. Thenf(x) € | ifand only if f(a) = O for anya € V(I).

3 The Inoue algorithm and the Inoue invariants

In this section, we will briefly review the Inoue algorithm and the Inoue invariaBis5[). The
Inoue algorithm is an excellent and almost canonical method for computing the singleton set solu-
tions of a system of Boolean polynomial equations.

We work in the Boolean polynomial ringf§)™(x) = (F2)™(X,...,X%n). For an ideall c
(F2)M(x), we set

Vs(l) :={(az.....an) | & €{er.....en}), f(as,...,an) =0 foranyf elj,

,,,,,

this set.
The Inoue algorithm is based on the conaptost solution polynomialsontained in the ideal.
In the following, we seE := Y, & = L,

Definition 14 (Solution polynomial)
We callf € (F)™(x) of the formf := E - Xj + & = X; + & for somej, k a solution polynomial

We note that for a solution polynomidl:= x; + &, f = 0 is equivalent tox; = &. We next
define an almost solution polynomial.

Definition 15 (Almost solution polynomial)

(i) A polynomial f(X) € (F2)™(X) is calledan almost solution polynomial of type(ASP of type 1

for short) if there exis§, k such thaty - f(X) = & - X; + & (namely,f(X) = Xj + 1 wherefy is the
k-th component of). We callSol(f) := x; + & the solution polynomial associated to the ASP f
We require a solution polynomial to be excluded from the ASP'’s of type 1.

(i) A polynomial g(x) € (F2)™(X) is calledan ASP of type X there existj, k such that - g = & - X;

for anyt exceptk (namely,gi(X) = x; for anyt exceptk). We callSol(@) := X; + & the solution
polynomial associated to.gWe require a solution polynomial to be excluded from the ASP’s of

type 2.

Supposef is an ASP of type 1 with its solution polynomial S6)(= x; + &. Thenf =0
implies that thek-th component of the variable is 1. Thusx; must be equal te since we are
computingVs(l). But note thatf = 0 is not equivalent t; = &. A similar reasoning holds for
ASP of type 2.

We prepare some notations for the Inoue algorithm.

6 Communications of JSSAC Vol. 2

Notation 16

Letl c (F,)™(X) be an ideal.

(i) CONST(1) := the set of non-zero constants containetl.in

(i) SP() := the set of solution polynomials contained inFor a variable;, if a solution polyno-
mial f = x; + & is contained irbP(), then we say the variabig is determined (with the valus).

(iif) ASP(1):= the set of ASP'’s (of type 1 or 2) in

(iv) Sol(ASR1)) := {Sol(f) | f € AS(l)} = the set of solution polynomials associated to ASP’s
contained in .

The following algorithm ASPTransform is the main part of the Inoue algorithm.

Algorithm 17 (ASPTransform)

Let| be an ideal (Input).

(i) If CONST() # ¢, then the output ASPTransforhj(s |.

(ii) If CONST() = ¢, then redefind := | + (Sol(ASP())). Namely, add td all the solution
polynomials associated to the ASP’slinThen go to (i) again.

(iii) Repeat this process untdONST() # ¢ or ASP() = ¢, and the output ASPTransforhj(is .

Now we can state the Inoue algorithm.

Algorithm 18 (The Inoue algorithm)
Fix a linear order on the set of variables, . . ., X,} (not a monomial order). Ldtc (F,)™(X) be
an ideal (input). Sdt .= {} (empty set). We will put a singleton set solutiorLirin order.
(i) If CONST() # ¢, then set. := L U {}.
(ii) If CONST() = ¢, then redefiné := ASPTransformi().
(i) If CONST() # ¢, thenL := LU {}. If CONST() = ¢ , we have 2 cases. (a)HP() consists
of n solution polynomials (namely = (x; + e, | j = 1,...,n)) so that all the variables are
determined, theh := L U{SP()} (this is a solution). (b) Else let, be the least variable among the
undetermined ones ané, . . ., &} the possible values of. Hereeg is a possible value of; if
and only ifCONST(+ (xj + &¢)) = ¢. Foreach (L <| < p), redefind :=| + (x; + &) and go to
(ii).
(iv) The final outputnoue() = L.

The following theorem makes it possible to rephrase the Inoue algorithm in terms of SBG bases
instead of ideals.

Theorem 19

Let| be an ideal ifF,)™(X) andG its SBG basis for a given monomial order. In the assertions (ii),
(i) below, we assumé does not contain non-zero constants.

(i) For a non-zero constante (F,)™, c e | ifand only ifc € G.

(i) For a solution polynomiaf, f € | ifand only if f € G.

(iif) Ifan ASP g is in |, then there exists an ASP € G such thatol(g) = Sol@).

The assertion (iii) of Theorem 19 above is the main result (Theorem 3Bj.oBfy Theorem
19, we can rephrase the Inoue Algorithm in terms of SBG bases instead of ideals. Namely, just
replace the idedl by its SBG basi€ in Algorithms 17 and 18.

For the actual implementation of this algorithm, we also need the explicit classification of
ASP’s contained in an SBG basis (s&eCorollary 3.9]). Inoue has implemented his algorithm on
the computer algebra system Rissir, whereas we have implemented it on the computer algebra
system Magméll].

We next define the Inoue invariant of an ideéat (F)™(x). The performance of the Inoue
algorithm is well described by a tree diagram defined as below.

Communications of JSSAC Vol. 2 7

Definition 20 (Inoue Invariant)
Let| be an ideal and perform the Inoue algorithm starting ftome will construct a tree Trek(
of | as follows:
(i) | is the first node (root).
(ii) When the algorithm ASPTransform stops, we have a second node.
(iii) There are three cases. (a) If at this n@®NST() # ¢, we have reached a terminal node (non-
solution leaf). (b) IICONST() = ¢ and all then variables are determined, then we have reached
a terminal node (a solution leaf). (c)ONST() = ¢ and there are undetermined variables, then
select the least undetermined variakje If there arep possible valuese,, ..., &} for x;, then
this tree branches ip directions at this node.
(iv) Repeat this process until all the branches reach a (solution or non-solution) leaf.

By the process above, we get a tree Trgd(Ve sell; = i{nodes, |, := #{leave$ andl; := the
depth of Tred() and call the tripléno(l) := (I4, |5, 13) the Inoue invariant of the ideal |

For the comparison of two Inoue invariants, we use lex order temporarily. The Inoue invariant
measures the complexity of computation of the singleton set soluti§@3$ by the Inoue algorithm
and is a very subtle invariant of

Example 21

Supposd(VS(1)) = 1. In case the Inoue algorithm calls ASPTransform only once and we reach
the unique solution at once, then Trgdg the simplest tree with 2 nodes, 1 leaf and depth 1 (see
Figure 1 below). In this case, we skyas a trivial Inoue invariar{e, 1, 1).

Fig. 1: The simplest tree with Ind) = (2,1, 1)

root
solution

leaf

4 Formulation of puzzles of Sudoku type by a system of Boolean
polynomial equations

In this section, we formulate the rules of the puzzles of Sudoku type in terms of Boolean polynomial
equations afteid, [10].

A Sudoku puzzles a partially-filled 9x 9 square board with the integers2]...,9, which
should be completed in such a way that every row, column and the designat8doBck (see
Table 1 below) is filled with no repeated entries.

We study the simpler versions of Sudoku, namely 4-doku, diagonal 5-doku and diagonal 6-
doku puzzlesA 4-doku puzzles a partially-filled 4x 4 square board with integers2 3, 4. Every
row, column and X 2 block of the board should be filled with no repeated entries.

A diagonal 5-doku puzzie a partially filled 5x 5 table, where each row, column and diagonal
(there are two diagonals) should be filed with numbers.15 (no repeated entries). Since there
are no blocks in 5-doku, it is natural to impose the diagonal conditions.

A diagonal 6-doku puzzis a partially filled 6x 6 table, where each row, columnx23 block
and diagonal should be filled with numbers 1,6 (no repeated entries). Note that there are six
2 x 3 rectangular (not square) blocks (see Table 2 below).

8 Communications of JSSAC Vol. 2

Table 1:An example of Sudoku puzzles

A Sudoku puzzle (clues) The solution board
3 9 178]5[2[7[3]6[9]4
2 5 2/3/4]|6|5(9|1]|7|8
6 9/6|7]|1|8|4|3]|2]|5
2 — 47176328957
7 8/5/2]|7|9|6|4]3]1
913 8 71913|4|1|/5|2|8|6
819 1 57278191411 7]6[3
6 5 2 6/4/9]|8|3|7|5]|1]2
4 3|/7]1]|5|/6|2|8|4]9

Table 2:An example of a diagonal 6-doku puzzle

A puzzle (clues) The solution board
17213456
4116|5213

= 3172|564

1 654|321

5 2 513[1]6]4]2
6 3 2/4]6]1|3|5

Since the formulation of the rules of these puzzles by a system of Boolean polynomial equations
are similar, we take 4-doku puzzles for simplicity and formulate their rules.

Table 3:Assignment of 16 variables

a1 | d12 | 13 | A4
Ao | Q2 | Q3 | A4
31 | @32 | A3 | A4
A1 | Qa2 | Q43 | Qs

We first assign 16 variables, 1, a;o,...,844 as in Table 3. We then consider the Boolean
polynomial ring F)*(ai1, a12. . ., ass) With lex ordera;; < a;p < --- < ass. We abbreviate as
0=1(0,0,0,0),1=(1,1,1,1) and sek; := (1,0,0,0),& := (0,1,0,0) etc.. Let us take the first
row. Then the 7 equations below express the rules of 4-doku for the first row:

a11+a12+a13+a14+1=0 (1)
a1 -ap=0,a11-a13=0,a11-a14 = 0,850 - a13=0,810- s = 0,a13- 414 =0 (2

For example, &11, a12, 213, a14) = (€1, &, €3, €4) Satisfies these equations. We note that there are
lots of solutions inl,)* other than this. For exampleasg, ai2, 13, a14) = (0, €1 + €, €3, &) is also
a solution, which of course is not admissible as a solution for 4-doku puzzles.

There are 4 rows, 4 columns and 4 blocks so that there:afd% 84 equations (or generators
of an ideal) in all. Adding the clues (initial values) to the above generators, we can represent the
rules of 4-doku puzzles by Boolean polynomials. We call the ideal generated by the above 84
polynomials together with the cluéise ideal of the given 4-doku puzzle

Communications of JSSAC Vol. 2 9

Let S be a puzzle of Sudoku type andts ideal. In B], we have defined the mathematical
difficulty of S as Ino(), which is supported by experimental data.

5 Main results

In this section, we state our main results and give the outlines of their proofs. For more details, see
Appendix [6]. We first need a definition.

Definition 22 (Redundant and irredundant puzzles)

LetS be a puzzle of Sudoku type with a unique solution. If the deletion of any one numbeBfrom
yields a puzzle which has more than one solution, weSs&an irredundant puzzleA puzzie is
calledredundantif S is not irredundant.

The following proposition lessens the amount of computation very much.

Proposition 23

LetS be a redundant puzzle of Sudoku type with a unique solutionSarpuzzle with several
numbers deleted froB. We assumé&’ still has a unique solution. If the Inoue invariant®fis
trivial, then that ofS is trivial too.

Proof Letl (resp. I’) be the ideal of the puzzI8 (resp. S’). Suppose we are applying the
Inoue algorithm td’. Since the Inoue invariant df is trivial, we reach the unigue solution by
applying ASPTransform once. Since we hdve 1’ it holds that ASP() > ASP(’),SP() o>
SP(’), Sol(ASP()) > Sol(ASP(")).

Thus we have the following diagram:

=15 ¢ 1=l
N
I, <
N N
N N
Y= c Ik

Herel} (resp.l;) is the ideal obtained by adding kp ; (resp.l;,) all the solution polynomials
associated to the ASP’s contained]r_11 (resp.lj-1). Furtherd” = ASPTransformi(’) is the ideal
which is a solution leaf (hamely contains the solution polynomials of all the variables and does
not contain non-zero constants).

We show thatl also is the solution leaf. Indeed, singec Iy, Ik also contains the solution
polynomials of all the variables. Furthdg, does not contain non-zero constants. Indeedl, if
contains a non-zero constant, théfly) = ¢ andl (namely the puzzI8) does not have a solution, a
contradiction to the assumption. Thiysatisfies the two conditions of the solution leaf. Therefore,
starting froml, we reach a solution ledf by one ASPTransform without branching, which means
that the Inoue invariant & is trivial.]

The following is the first main result of this note.

Theorem 24 (Inoue invariants of 4-doku)
Any 4-doku puzzle with a unique solution has the trivial Inoue invar@s, 1).

10 Communications of JSSAC Vol. 2

Proof In the case of 4-doku, the irredundant puzzles (with a unique solution) exist only if the
number of clues is 4,5,64]). Hence, by Proposition 23, it is enough to see that the Inoue invariant
of the puzzles (with a unique solution) with 4,5,6 clues is trivial.

Further, there exist only 2 essentiallyfdrent (namely dferent modulo the action of the 4-
doku symmetry group) solution boards as shown in Tabl&}: ([

Table 4:The essentially dierent 2 solution boards

No.1 No.2
112134 11234
3141112 314112
21114713 2131411
413121 411]12)|3

Now, let S be a 4-doku puzzle wittk (k = 4,5,6) clues with a unique solutiol. By a
suitable 4-doku symmetry transformation, we may asstiniséNo.1 or No.2 above. Itis immediate
to check that all the puzzles with a unique solution obtained by delétfhg 10,11, 12) cells
from these 2 solution boards have the trivial Inoue invariant by a computation with Magma (see
Appendix |6, Section 1]). Thus our theorem is proved.]

We now turn to the diagonal 5-doku puzzles. We first enumerate the essentiihei solu-
tion boards of diagonal 5-doku.

Let S5 be the symmetric group of degree 5 ang the dihedral group of order 8D, is the
symmetry group of the square with center at the origin. We noteSkatcts on the seX of the
solution boards of the diagonal 5-doku as the permutation of numBaralso acts naturally on
X and actually,Ss x Dy is the symmetry group of the diagonal 5-doku. The following theorem
classifies the seX of solution boards modulo the action 8§ x Dj,.

Theorem 25 (Essentially dfferent solution boards of diagonal 5-doku)
There are only three fferent solution boards modu®y x D4-action as shown below.

NSB No.1 NSB No.3 NSB No.6
T12]3]4]5 T12]3]4]5 T12]34]5
245|331 34512 45231
5/3/2|1|4 51234 53412
3/1(4[5]2 2(3[4[5]1 3/1](5|2]4
45123 4(5[1]|2]3 2(4[1|5]3

For the proof of Theorem 25, we first consider oBlraction, forgettingD4-action.

Definition 26 (Normalized solution boards of diagonal 5-doku)
A normalized solution board (NSB for short) is the one such that the first row is givewm by
Lap=2a3=3 a4=4a5=5.

We note that each equivalence class of solution boards und&sthetion contains a unique
normalized solution board.

Proposition 27 (8 NSB'’s of diagonal 5-doku)
There are exactly 8 normalized solution boards as shown below.

Communications of JSSAC Vol. 2 11

wn
vs)
=z
%]
vs)
=z
wn
vs]
pd
wn
vs]
pd

0 0. 0. 0

N 1 N 2 N 3 N A4
11231415 11231415 172131415 17231415
214|531 2154113 314|512 3/5(2|1]4
5/3|2]1]|4 413|2|5]|1 5/1/2|3]|4 5/1]4|3|2
3/1(4|5|2 5/4(1|3|2 213|451 413]5|2]|1
4151|283 3/1|5(2]|4 4151|123 2|14(1]5]|3

NSB No.5 NSB No.6 NSB No.7 NSB No.8
172131475 172131475 172314715 17231415
4/5(1]2|3 4151231 5/3|1]2]|4 5|/3(4]1]|2
213|451 5/13|4]1]|2 2|5|1413]|1 4151231
5/1|2|3]|4 3/11|5|2]|4 411|12|5]|3 2141153
314|512 2141153 314|512 3/1(5|2]|4

Proof Letl be the ideal of the puzzle with the initial conditiam = 1,812 = 2,813 = 3,14 =
4,35 = 5. Then we get the desired 8 solution boards by applying the Inoue solver (algorithm) to
(see Appendix®, Subsection 2.1]).]

Proof of Theorem 25. If we transform the 8 NSB’s with thg-action and then normalize, it is
easy to check that there are 3 orbifdp.1, 2, 4, 7}, {N0.3, 5}, {N0.6, 8}. Thus NSB No.1,3,6 are the
complete representatives of the solution boards uSgerD, action.]

We next enumerate the diagonal 5-doku puzzles with a unique solution.

Theorem 28 (Number of the diagonal 5-doku puzzles with a unique solution)

(i) There exist exactly 30964554720 diagonal 5-doku puzzles with a unique solution.

(ii) The irredundant puzzles exist only if the number of clues is 4,5,6, and the number of them is
7639680 in all.

Proof (i) LetS be a diagonal 5-doku puzzle with a unique solutionBy a suitable transfor-
mation, we may assunie is one of the three NSB’s in Theorem 25. Now, by a time-consuming
computation by Magma (see Append®; [Subsection 2.2]), we find that the number of puzzles
which has the NSB No.1 (resp. No.3, No.6) as the unique solution is 32258030 (resp. 32246636,
32256282). Thus there are

(32258030« 4 + 32246636x 2 + 32256282« 2) x 5! = 30964554720

puzzles with a unique solution in all. Note that we do not takeShg Dj-action into account for

this enumeration.

(i) By a similar computation as in (i), we can check that there are no irredundant puzzles which
have NSB No.1, No.3, No.6 as a unique solution vkittlues k > 7). Also there are exactly 7996

(resp. 7920, 7920) irredundant puzzles which has No.1 (resp. No.3, No.6) as a unique solution (see
Appendix B, Subsection 2.2]). Thus there are

(7996x 4 + 7920x 2 + 7920x 2) x 5! = 7639680
irredundant puzzles in all.]
We have a following impressive corollary.

Corollary 29 (The number of minimal and maximal clues of diagonal 5-doku)
(i) The minimal number of clues of the diagonal 5-doku puzzles with a unique solution is 4.
(if) The maximal number of the clues of the irredundant ones is 6.

12 Communications of JSSAC Vol. 2

Remark 30

(i) Theorem 28 is significant in itself since this kind of precise enumeration seems to be known
only for 4-doku so far @]).

(i) To accomplish the computation for Theorem 28, we spent about a month using several Windows
PC'’s simultaneously.

The following theorem is our second main result.

Theorem 31 (Inoue invariants of diagonal 5-doku)
All the diagonal 5-doku puzzles with a unique solution have the trivial Inoue invariant except the
following two puzzledhN,, W, (moduloSsxDg4-action). These two have the Inoue invarighe, 2).

Table 5:The diagonal 5-doku puzzles with the non-trivial Inoue invarian2(2)
wi

W2
(1] | [4]5] I T
4
3|1 5 3|1
415

Proof By Theorem 28 (ii), the irredundant diagonal 5-doku puzzles exist only if the number of
cluesis 45, 6.

Now, letS be a puzzle wittk (k = 4, 5, 6) clues with a unique solutioh. By a suitable 5-doku
symmetry transformation, we may assuimés one of the 3 NSB’s in Theorem 25. We can check
that all the puzzles with a unique solution obtained by deldtithg- 19, 20, 21) cells from these 3
solution boards have the trivial Inoue invariant excéfgtandW, by a computation with Magma
(see Appendix, Subsection 2.3]).

Furthermore, if we add any number contained in the solution boaid tandW, it is easy to
check that the resulting puzzles all have the trivial Inoue invariant. Thus by Proposition 23, we are
done.]

Remark 32

We note that\; (i = 1,2) has 6 clues, whereas the minimal number of clues of the puzzles with
a unique solution is 4. Since it is natural to expect that the fewer the clues, the rfimgltdihe
puzzles are, this is an interesting phenomenon.

We finally report a partial result on the Inoue invariants of the diagonal 6-doku puzzles, whose
proof we omit since it is similar to that of Theorem 31.

Theorem 33 (Inoue invariants of diagonal 6-doku restricted to the 5-clues case)

(i) The minimal number of clues of the diagonal 6-doku puzzles with a unique solution is 5.

(ii) There exist exactly 44542080 puzzles with 5 clues which have a unique solution. Among them,
there exist 10540800 puzzles with a non-trivial Inoue invariant. The biggest Inoue invariant of
them is(20, 12, 5), and the puzzle with this Inoue invarid20, 12, 5) is the following one in Table

6.

Communications of JSSAC Vol. 2 13

Table 6:The diagonal 6-doku puzzle with 5 clues with the biggest Inoue invarianfl@28)

ogjo oo 510

Remark 34
(i) As Theorem 33 shows, there are many diagonal 6-doku puzzles with a non-trivial Inoue invariant
unlike 4-doku and diagonal 5-doku puzzles, even restricted to the case of minimal 5 clues.

We also note that, as seen from the case of diagonal 5-doku puzzles, the number of clues of the

puzzle with the biggest Inoue invariant may be larger than the minimal number of clues (Remark
32). Hence it may well happen that the diagonal 6-doku puzzle with the biggest Inoue invariant
(unknown so far) hap clues where > 5.
(ii) The reason that Theorem 33 refers only to the case of 5 clues is that it takes too much time
for this computation. We estimate that it will take several years (maybe more) to achieve the same
computation for all the number of clues. Thus, in the case of diagonal 6-doku, we have not obtained
a complete result as in the case of diagonal 5-doku.

References

[1] Bosma, W., Cannon, J., Fieker, C. and Steel, A. (etahdbook of Magma functionEdition
2.18, http/magma.maths.usyd.edu/aagma (2011).

[2] Cox, D., Little, J. and O’'Shea, Dldeals, Varieties, and Algorithmghird ed., Springer
(2007).

[3] Inoue, S., Hicient Singleton Set Constraint Solving by Boolean Grébner B&dasimuni-
cations of JSSAT(2012), 27-37.

[4] Minami, S., Harikae, S. and Nakano, T., Enumeration of the 4-doku puzzles with a unique
solution (in Japaneseulletin of JISSAQ8(2012), No.2, 21-24.

[5] Nakano, T., Minami, S., Harikae, S., Arai, K. and Watanabe, H., On the Inoue invariant of
a system of Boolean polynomial equations and its applications to puzzles of Sudoku type,
preprint (2012).

[6] Nakano, T., Arai, K. and Watanabe, H., Appendix to the note "On the Inoue invariants of
puzzles of Sudoku type", htfpmath.ru.dendai.ac jpnakangresearch.html (2013).

[7] Rosenhouse, J. and Taalman, Taking Sudoku Seriousl@xford University Press (2011).

[8] Sato, Y., A New Type of Canonical Grébner Bases in Polynomial Rings over Von Neumann
Regular Rings, inProceedings of ISSATC998), ACM press, 317-321.

[9] Sato, Y., Inoue, S., Suzuki, A. and Nabeshima, K., Boolean Grébner Bases and Sudoku,
preprint (2008).

[10] Sato, VY., Inoue, S., Suzuki, A., Nabeshima, K. and Sakai, K., Boolean Grobner bases.
Symbolic ComputatioA6(2011), 622-632.

14 Communications of JSSAC Vol. 2

[11] Weispfenning, V., Grébner Bases in Polynomial Ideals over Commutative Regular Rings, in:
Davenport, E.(ed. FUROCAL'87 Springer LNCS3781989), 336-347.

Communications of JSSAC (2016)
Vol. 2, pp. 15-32

Approximate Polynomial GCD over Integers
with Digits-wise Lattice

Kosaku NagasaFKa

Kobe University

(Recervep 29Auc/2014 Acceptep 3/Mar/2015)

Abstract

For the given coprime polynomials over integers, we change thefficieats slightly over in-

tegers so that they have a greatest common divisor (GCD) over integers. That is an approximate
polynomial GCD over integers. There are only two algorithms known for this problem. One is
based on an algorithm for approximate integer GCDs. The other is based on the well-known
subresultant mapping and the lattice basis reduction. In this paper, we give an improved algo-
rithm of the latter with a new lattice construction process by which we can restrict the range of
perturbations. This helps us for computing approximate polynomial GCD over integers of the
input erroneous polynomials having a priori errors on some digits of thefficieats.

Key words Approximate Polynomial GCD, Lattice Basis Reduction

1 Introduction

Symbolic numeric algorithms for polynomials are very important, especially for practical com-
putations since we have to operate with empirical polynomials having numerical errors on their
codficients. Recently, for those erroneous polynomials, many algorithms have been introduced,
approximate univariate GCD and approximate multivariate factorization for example. However,
for polynomials over integers having erroneousfioents (e.g. rounded from empirical data),
changing their caicients over reals does not remain them in the polynomial ring over integers,
hence we need algorithms designed over integers. In this paper, we discuss about computing a
polynomial GCD of univariate or multivariate polynomials over integers approximately. Here,
“approximately” means that we compute a polynomial GCD over integers by changing their coef-
ficients slightly over integers so that the input polynomials still remain over integers. We improve
one of known algorithms for computing an approximate polynomial GCD over integers defined
below.

Definition 1 (Approximate Polynomial GCD Over Integers)
Let f(X) andg(X) be polynomials in variable® = X, ..., X, overZ, and lets be a small positive

integer. If they satishf (X) = t()h(X) + 41(x), 9(X) = S(R)(X) + 44(X) ande = max{i4+]|, [|44l}

*nagasaka@main.h.kobe-u.ac.jp

© 2016 Japan Society for Symbolic and Algebraic Computation

16 Communications of JSSAC Vol. 2

for some polynomiald s, A4 € Z[X], then we say that the above polynomiéX) is anapproximate
GCD overintegers We also say thd{X) ands(X) areapproximate cofactors overintegersand we
say that theitoleranceis ¢. (||pl| denotes a suitable norm p(X).) <

Example 2
Let f(x1, X2) andg(xy, x2) be the following polynomials over integers, which are relatively prime
and supposed to have numerical errors on theiffoents.

f(Xl, Xg) = 1530(§X% - 3601X%X2 + 2109(% - 171)(1X§

+ 3506x3 %2 — 3703 — 699)(% + 94x, + 1561,
2755@2 — 585X, + 3110¢ — 511842

+5296x3 % + 351x; + 2275(% — 1098, — 3822

0(X1, X2)

We would find the following approximate GCD over integers, where the underlined figures are
slightly changed to make them having a non-trivial polynomial GCD.

f(x1, %) = (34x3X2 — 37x1 — 25X + 39) X (45x1 X2 — 571 + 28%; + 40)
= 1530<§x§ - 360_3<§xz + 2109(% - 17_3x1x§
+ 35041 %, — 37033 — ﬂOx% +92x; + 156Q
o(xe, X2) =~ (34xyx — 37%y — 25% + 39) X (81x3 %o — 84x; — 91x, — 98)

= 2754Gx5 — 5853¢ X, + 3108¢F — 5119 X5
+ 5294 X, + 350x; + 2275G — 1099, — 3822

In this cased = 2X2Xo+ 2X1 X5+ 2X1 Xo + X5+ 2%+ 1, Ag = XaX5+2XE Xp + 2X2 + X1 X5+ 2X1 X + X1 + Xp
ande = 2 in theco-norm. <

We note that for polynomials over the complex numbers, there are many studies and various
algorithms (L2,16,4,[15,131,[30, 5, 32,123,134, 133,125,[13,122,(9, 24,18, [16, 21, 126, 27,20, 2, 3, [7]).
Hence one may think that we can compute an approximate GCD over integers by rounding the re-
sult by those algorithms since they compute approximate GCDs over complex numbers. However,
it is difficult to make them as polynomials over integers since the resulting tolerance easily becomes
large and far from the given polynomials (sé€)]). Therefore, we need algorithms designed for
polynomials over integers.

For computing approximate GCD over integers, there are two known algorithms. One is based
on the result from approximate integer common divisors by Howgrave-Gralddih (The other is
based on the well-known subresultant mapping and the lattice basis reduction (the LLL algorithm
[14]). The former algorithm is originally proposed by von zur Gathen and Shparlin2gj) (&t
LATIN 2008 and revised by von zur Gathen et @8§]). Their algorithm only works for very
tiny tolerances and one of input polynomidl&) andg(X) must be given exactly and can not be
perturbed. However, the algorithm always can compute an approximate GCD over integers if the
given polynomials satisfy the certain conditions. The latter algorithm is proposed by the present
author ([L7]) at ISSAC 2008 and revisedl]). In contrast with that by von zur Gathen et al., this
algorithm works for not only very tiny but also small tolerances and all the given polynomials can
be perturbed (as described in the definition). However, any theoretical condition which guarantees
that the algorithm can compute an approximate GCD over integers, is not given.

1.1 The problem to be solved

In this paper, we give an improved algorithm with a new lattice construction process by which we
can restrict the range of perturbations in some cases. This helps us for computing approximate

Communications of JSSAC Vol. 2 17

polynomial GCD over integers of the input erroneous polynomials having a priori errors on some
digits of their codficients. For example, the known methods can not compute any approximate
polynomial GCD over integers for the following polynomials.

f(X) = -302260¢ — 1749335283 + 459434462 + 231047900996 — 143756712
” (889x2 +51270K — 319) (—340x2 — 69X + 45064$ —2x 103,
g(x) = 526407468* + 303589900698 — 69087519%2 — 323202349 + 205289

(889 + 51270% - 319) (5921402 — 978x — 631) - 5 x 10°x* + 4 x 1C°.

In this case, the tolerance (the absolute error)sl®® in the co-norm and the relative error is not
small in relation to the smallest cieients hence computing an approximate GCD over integers
for this pair of polynomials is not so easy. In fact, the known algorithf©g ([18]) can not detect
any expected result.

One may think that this example seems to be odd. However, this situation possibly occurs in
some computations with multi-precision integers (each integer is represented as an array of word
size integers). For example, transmission errors on some elements of the array, computing lower
and higher digits separately and so on. In fact, the above pair of polynomials has perturbations
on the second digit only (as an array offlifitegers) hence they are in this case. Moreover, this
is also useful for simplifying algebraic expressions (e.g. each simplicity of expression is heavily
depending on the number of terms not the magnitude dfictents in general) as in the following
polynomial.

(286X — 54821x, — 3907787
+(203830¢ + 1127664%; + 35293 x; — 179303 — 990865, + 54765
(22%, + 1217)((13¢ — 3211)¢ + (9265¢ + 29)x; — 815xp + 45)+ 5 X 10PxpXy.

(X1, %2)

For this problem, we review the algorithm given by the present auth8})(in Section2. We
give a new lattice construction process in Sect®rincluding various numerical examples. In
Section4, we give some remarks for this extension. We note that the present article is an ex-
tended work of the presentatiofif]) with the extended abstract at SNC 2011 (Symbolic-Numeric
Computation, June 7-9, 2011, San Jose, California), and the ideal of this paper is based on the
preliminary presentation about computing approximate GCD of integers (not polynomials) by the
present author in Research Institute for Mathematical Sciences, Kyoto University in 2010.

2 Approximate GCD by Lattice Basis Reduction

We review the known resultI[7],[[18]) briefly. Let f(X) andg(X) have total degrees = tdeg(f)
andm = tdegg@), respectively. We call the following mappii$j(f, g) the subresultant mapping of
f(X) andg(X) of orderr.

Pror1XPnr1 — Prmra

Si(f,0): (s(R), (X)) — S(X)f(X) + t(xa(X)

wherer = 0,...,min{fn,m} — 1 and®y4 denotes the set of polynomials in variabbes..., x,,
of total degreed or less. We denote the d@ieient vector of polynomiap(X) by vect(p) w.r.t.
the lexicographic ascending order in this article. We note that any term order can be used for
representing cdicient vectors since the order is not essential. To see the number of elements

of a codficient vector, we define the notatiofig, = (d‘;”) hence the number of termé - - X

18 Communications of JSSAC Vol. 2

satisfyingiy + --- + iy < d can be denoted b§yo. Thek-th convolution matrixCy(f) is defined
to satisfyCy(f)vect(p) = vect(f p) for any polynomialp(X) of total degreek — 1 or less, where
vect(p) € ZP1oxl andCy(f) e ZPr10¥-10, We have the matrix representation of the subresultant

mapping:Sy}(f,) = (Crmr () Cnr(9)) Of size Bnim-1r) X (Bm-1r + Bn-1r), Satisfying

Si(f,9) : Prr-1 X Pnr-1 = Primr-1
9 (vect@) tvectt)) — vect(sf+tg) = Syl(f, g)(vect(s) ! vectf) !)t

This mapping is the same as [@0], and has the same property thdi)/t(X) and g(xX)/s(X)
is the GCD off(X) andg(X) if r is the greatest integer such that this mapping is not injective.
Hence by computing null vectors &yl (f, g) approximately for the given coprime polynomials,
we can compute candidate vectors of approximate cofactors over integers. This procedure can be
done by finding short vectors by the well-known LLL algorithiiai4]). For this, we construct the
lattice generated by the row vectors 6€f, g, r,) which is defined as the following matrix where
r denotes the order of the subresultant mapping.

L(f,9,1,0) = (Eg, 1, 4, | ©- SYH(T,)

whereE; denotes the identity matrix of sizex i andc € Z. The size of£(f,g,r,C) iS Bn-1r +
Breir) X Brevr + Bm-1r + Brrm-1r). We note that we mark a block matrix with a vertical bar to
distinguish the identity matrix representing a collection of linear combinations from the matrix
formed by the coficient vectors.

However, the short vectors found are only candidate cofat{gysaind s(X) € Z[X] such that
s(X) f(X) +t(X)g(X) ~ 0, andf(X) andg(X) may not be divisible by(X). To compute an approximate
GCD from the candidate cofactors, we apply the LLL algorithm again to the lattice generated by
the row vectors of the following matrix{(f, g,r, c,t, s) of size Br110+ 1) X (Bno+Bmo+Br+10+1).

7_((1:, g7 r? Ca t’ S) = (Eﬁr+l,0+1

c-vect(f)! c-vect@)!
C-Cra(=t)! c-Cria(9)t |-

We have the following lemmas ifi§].

Lemma 3

Let B be a bound of maximum absolute value of @méents of any factors of(X) andg(X). For
the lattice generated by the rows.6€f, g,r, c,) with ¢, = 26r-utbnr=D/2 g " "+ B 1 (B, the
LLL algorithm can find a short vector whose figt 1, + Bm-1r €lements are a multiple of the
transpose of the cdiécient vectors of cofactors df(X) andg(X) by their GCD, ifr is the greatest
integer such that the subresultant mapping is not injective. <

Lemma 4

Let B be a bound of maximum absolute value of @mgents of any factors of(X) andg(X). For
the lattice generated by the row vectorstoff, g, 1, Cy,t, S) with ¢y = 264102 B 19+ 1B + 1,
the LLL algorithm can find a short vector whagend, . . ., (Br.+10 + 1)-th elements are a multiple of
the transpose of the cfiient vector of the GCD of (X) andg(X), if r is the greatest integer such
that the subresultant mapping is not injective. <

For example, we consider the following pair of erroneous polynomials.

f(X)
a(x)

2052 + 18x - 27
29%% + 61x + 19

Ax+T7)(Bx—-4) - x+ 1,
A+ T)(Tx+3)+x2 - 2.

Communications of JSSAC Vol. 2 19

We construct the following matrix(f, g, r, c) with r = 0 andc = 1, and apply the LLL algorithm
to the lattice generated by the row vectors/gf, g, r,).

0 19 61 29 0 -45-3 -7/ 5-14 3 5
0 0 19 61 29| |-56-3 —9/-14 -2 -1 -6
0-27 18 20 0 -79-5-13] 2 5 12 1|
1 5

0
0
1
0 0 -27 18 20 -4 -3 -8/ 5 13 -15 -15

10
01
00
00
We take the first row vector as candidate cofactors (we note that we have to seek the candidate

through all the short vectors). We construct the following matiif, g, r, c,t, s) with ¢ = 1 and
apply the LLL algorithm, to compute an approximate GCD.

10 0/-27 18 20 19 61 2 1-7-41-10-201
010 -4 5 0 3 7 0f—-|0 1 0-4 50 37 0.
001 0-4 5 0 3 7 0O 0 1 0 45 037

Hence, we get»+ 7 as an approximate polynomial GCD over integers axe 8 and & + 3
as approximate cofactors. We note that there are more complicated examples, some lemmas and
techniques for decreasing the computing-time (4&[[L8]) though we do not show them here.

3 Digits-wise Lattice

The algorithms introduced iil[f] and [18] work well for nearby polynomials having polynomial
GCD, according to the numerical experiments therein. However, they can not detect any approxi-
mate GCD for the following type of polynomials as noted in the introduction. We note again that
this problem is not so special in practice (multi-precision integers, simplifying algebraic expres-
sions and so on). It could be more general word sizes (€% t®ugh the word size we use here

is 10" since this is easy to understand and does not exceed the paper width.

f(X) = 323+76x2+22x+15 = (4x+5)(8x% + 4x + 3) + 20x% — 10x,
g(x) = 10x°+53x? +59x + 40 (4x + 5)(5%% + 7x + 6) — 10x® + 10.

To extend the algorithms for the above case (all thefoments have a priori errors on only the
limited number of digits), we introduce the following digits-wise lattice instead @, g, r, ¢) by
extending the ca@cient vector to the digits-wise.

L(f,g,r,c) =
100000405953 10 O 1000004059531 0000
010000 040595310 01000000405953100
0010000 04059531 00100000004059531
000100Q015227632 0 00010015227632000
00001 0 15 22 76 32 00001Q000152276320
000O00O 0 0152276 3 0000010000152 2763

However, the row spaces of the above matrices are not the same and they are essdfaralht di
since digit-wise operations can not follow the carrying and borrowing operations for integers. For
computing an approximate GCD we need to guarantee that the row space haditbienteectors
corresponding to their cofactors, hence we have to perform some atrtificial carrying and borrowing
operations in this row space. To do this, we add some extra row vectors representing carry and

20 Communications of JSSAC Vol. 2

borrow digits to the matrix as follows.

10000 4 0 59 53 10 00 0 G
01000 00 4059 5310 00(¢d
00100 00 00O 4059 53 10(d
00010 1522 76 32 0000(
00001 00 15 22 7 6 3 2 00U(
00000 00 00O 15 2 2 7 6 3 2
000000G-1210 0 0 0 O OO 0 O O (
00000O0 0 0-110 0 0 0 0O 0 0 0QC
00000 0 0 0 01120 0 0 0O O O O extra rows
00000 0 0 00 O0O0O-110 0 0 0O '
00000 00 00O OO O0OO0O-110 0O
00000O0 00 00O 0O OO O 0110

Moreover, in this case, if we can assume that only the second digit has a priori error hence we
multiple the columns except ones corresponding to the second digit by 100 as a penalty weight.
The LLL algorithm gives the following result for the lattice generated by row vectors of this scaled
matrix.

1 -2 6-2 151 0-5 0-3 0 16 0-5 0-10 O
3 4 8-6-7-53 0 10 0 3 0-12 0-14 0 -8 0
0-10 010 O Q15 0-18 0 17 0-21 0-10 O 0O O
2 -4 2-4 2 02 0-10 0-31 0 -5 0 13 0 2 0
6 -2 -4-2 6 021 0 32 0 2 0 11 0-4 0 -4 0
1 2-16 2 9 §-1 0 20 0-15 0 1 0-16 0 0 O
2 4 2-6-3 0/-1 0 10100-10 0 -7 0 5 0 2 of
3 -1 46 10-3 0-7 0 10 0 -5-100-19 0 -4 0
1 -2 4-2-1 001 0 -8 0 -8100 0 0 16 0 4 G
3 5-14 1018 0 8 0 15 0-9 0 -7-100 -1 O
3 -2 46 3 1-3 0-8 010 0 7 0-6 0 -1200
2 -4 2 1 2 0950 1 0 7 0 11 0 13 0 2 b

We can see that the resulting matrix has the row vector corresponding to tfieieaevectors of
expected approximate cofactorsig& 4x + 3, 5x° + 7x + 6) on the second row underlined. In the
following subsections, we formalize this process into definitions and an algorithm.

3.1 Definitions of Digits-wise Representation

We denote the canonical form of lengthof the basé digits in the integen as

.,a1, ag} such that
O<sign@a <b (i=0,...,w-2)
sign@) = sign@) (i=w-1).

Yae Z, digits,,(a) = {aw-1, ..
a=Y"'ab and {

For example, we have digits,(123)= {12 3}, digits;;3(123)= {1, 2, 3}, digits;(4(123)={0, 1, 2, 3}
and digitsy5(—-123) = {-1,-2,-3}. We extend the cdgcient vector of polynomiap(X) to the
digits-wise operations and denote it by vggtp) whereb andw are the base number and the
length of the list of digits, respectively, such that

vechw(p) = {digits, ,(pe) - .. digits, ,(po)}' where vectp) = {pe ... po}.

Communications of JSSAC Vol. 2 21

For example, we have vagh(32x + 76x? + 22x + 15) = {1,5,2,2,7,6, 3,2}'. We note that the
sizes of the coficient vectors vegt,(f) and veciw(g) of f(X) andg(X) in the digits-wise form are
W X fBno andw X Bmo, respectively. Therefore, their inverse mappings q;g)(&) and vecgyt,(-) can
be defined as follows.

w-1

digits;,(8) = > abl, vect,(p) = vect (digits; ,(Bus,o): - - - digits; 1, (Po))

i=0

whered = {ay_1,...,a1,a) € Z¥ andp = {ﬁthpno’ ., Pt € Z%Fo, and vect!(-) is the conven-
tional mapping from the cdicient vector to the polynomial.

We also extend thé&-th convolution matrix and the matrix representation of the subresul-
tant mapping to the digits-wise operations in the same manner and denote th€gy, i)
and Syl pw(f, g), respectively. We note that in general they do not sa@fyw(f)vecbw(p) =
vechy(fp) for any polynomialp(X) of total degreek — 1, however this is not the matter in our
approach. Moreover, we have vggtf) = vect(f), Cxp1(f) = Ck(f) andSyl1(f, 9) = Syl(f, 9).

For the digits-wise lattice introduced in the beginning of this section, the carrying and borrow-
ing are important hence we define the following carry-borrow ve@gys (i = 0,1, ...,w—-2) and
matrix Zpw, satisfying digitgy,(Zow) =0 (= 0,1,...,w—2).

Zb,W,i = {0, ey O, _1, b, 0, ceey O}t (S ZW, Zb,w = {Zb,W,O .. Zb,W,W*Z}t <] Z(W—l)XW.
S~— S—

i w—i-2

We also extend’(f,g,r,c) andH(f,g,r,ct, s) as follows and denote them by w(f, g, r, c) and
How(f, 0,1, ¢, 1, 9), respectively.

Eﬁn—l.r +Bm-1.r C: SYL,b,w(f, g)t
C- Zbw

Low(f,0,1,0) = C- Zow ’

C- Zb,w

£ c-vechy(f)! c-vechw(9)
Brerotl o Cr-¢—2,b,w(_t)t C- Cr-¢—2,b,W(S)t

C-Zbw

Wb,W(f’ g.rcC, t, S) = C- Zb,W

C-Zow

The sizes ofLpw(f, 9,1, C) andHpw(f, 9.1, C,t, S) are (Bn-1r +Bm-1r) + (W—1)Bnim-1r) X Br-1r +
Brm-1r + WBnim-1r) @nd Bri10+ 1+ (W= 1)([Bno +Bmo)) X (Br+1.0 + L+ W(Bno +Bmo)), respectively.

Example 5

We show some examples 8§ w(f, g, r, c) andHyw(f,0,1,C,t, S) for
f(X) = 32¢+56x°+32x+15 = (4x+5)(8%° +4x+3), t(x) = -8x% —4x -3,
g(x) = 20x3+53x° +59x + 30 = (4x+5)(5%° + 7x+6), S(X) = 5x% + 7X + 6.

22 Communications of JSSAC Vol. 2

We have the following matrices for the base number10 and lengthw = 2 if we assume that the
order of subresultant mappingdsandc = 1.

iy
o
w

L102(f,09,0,1) =

ROOPRKR OO
|
| o
cNoNoNeoNoNelloNé N Ve Ne i)

OO0 OoOOoOFRPRoOOFRr WO WU

|_\
OO0 O0OQPOoOouNOO OW

coolFPoorwowurmwnm

coFocoolwuwurmuaNn

H
coCPOoolvoeoNOwO

=
oPPo0coolonvowoo

o"P0cooluwouno

cocoocoocooooocoocoo
Oo0oo0oo0cooocoorocoo
coocoocoooor oo o

|

H
loNoNoNoNola|leNa R NoloNa
H

©CCocogolwoonoo

H
C9cocoanamaocanano

[eNeoNoNoNoNoNoNollol el cNeoNoNoNeoNolloNoNoNol o]
SO0 O0O00 OOk OO cNeoNoNoNeoNolloNoNeol SN elNe]

=
[elieNoNe]

[cNeoNeoNoNeoNeoNeNe]leRNiVNe|

[cNoNoNoNoNoNaol JlioNel
O o oowu

Uuulud

[

OocooocoocokRoocow ogoooo
Sooloomn

Hig2(f,9,0,1,t,9) =

H
cocooco®PCoopmonn

cocoocooFFocogpoloow

coolFPocooloow

H
o
oo ©Coooolo~o©

H
co CPOocooloow
I—‘OOOO

H
c':oooOOoo\lmw

I—‘OOOO

[

OO0OO0OO0O0COO0OOOwhAN
|
cOocoocoocoorFPooloow
|_\
[cNeoNeNoNol®Nole] W NN Mo

coocococoooloor
H

coo®Poo

OOOOOr—\

o

<

For any fixed non-negative integervect(-) and vec&t,(-) can be thought as linear mappings
overZ between?, andZ"¥n where®, is a submodule oZ[X] defined in the previous section.
However,?,, andZ"¥# are not isomorphic by these mappings. We define the quotient module of
Z"$no py the equivalence relatiorf*= giff vecglw(fj = vecg\lN(Q)” or its subspace generated by
the row vectors of block diagonal matrix (JZb,W,’. s Zowh and we denote this guotient module
by Zmﬁ”*O. By these definitions?,, is isomorphic th‘Kf”"’ by vechw(-) and vegtl,().

Lemma 6

Let B be a bound of maximum absolute value of @mgents of any factors of(X) andg(X). For
the lattice generated by the row vectors&ify(f,g,r,c,) with ¢, = 26r+huir+W=DBnm1,-1)/2
vBn_1r + Bm-1:B, the LLL algorithm can find a short vector whose fi#gt, +Bm_1, €lements are
a multiple of the transpose of the dheient vectors of cofactors df(X) andg(X) by their GCD, if
r is the greatest integer such that the subresultant mapping is not injective. <

Proof There are cofactotéX) and s(X) of f(X) andg(X) by their GCD, respectively, if is the
greatest integer such that the subresultant mapping is not injective. Hence, the lattice generated
Wxﬁnﬂmlj

by row vectors ofLyw(f,g,r,c.) has the following vectotn sincez, is isomorphic to
Prim-r—1 as shown above.

Umin = (the transpose of the cfieient vectors o§(X) andt(xX), 0 - - - 0).

WXBnim-1,r

Communications of JSSAC Vol. 2 23

The LLL algorithm can find a short vectarsatisfying

”U”ZS 2(,3n—1.r+ﬁrm1.r+(W_1)ﬁn+rm1.r—l)/2 ||Umin||2 .

Since all the non-zero elements of rightx Bn.m-1r columns of any row vectors in the lattice
which is generated by the row vectors 6§ (f,g,r,cs) must be larger than or equal ty =
200-1rtBma+W-Dbnemar-1)/2 3 7 7B B in absolute value, the right x Bn,m-1, columns of

the found short vectall must be zeros. This means that the transpose of the vector formed by the
first Bn-1r + Bm-1r €lements ofiis in the null space 08yl yw(f, g) hence in that oBy}(f, g) and

the lemma is proved.]

Lemma 7

Let B be the maximum absolute value of édaents of any factors off(X) andg(X). For the lattice
generated by the row vectors®,(f, .1, Cx, t, S) with ¢y = 2610t W=Dbno*bno))/2 (5 o+ 1B
+1, the LLL algorithm can find a short vector whdded,. . ., (Br.1.0+ 1)-th elements are a multiple
of the transpose of the cfieient vector of the GCD of (X) andg(X), if r is the greatest integer
such that the subresultant mapping is not injective. <

Proof The proof is similar to that of Lemnigh]

We note that in LemmE] the short vectors corresponding to the GCD must halien the
first element since this means the number offtoient vectors off (X) andg(X) reduced by the
codficient vectors of cofactors. Moreover, this can be thought as the closest vector problem (CVP)
hence it may be possible to use Babai’'s nearest plane algorifjringtead of the method based
on the lattice in Lemmil

Example 8
For polynomials in ExamplB, we have the following matrices with the base nuntberl0, length
w = 2, orderr = 0, ¢, = 9658andcy, = 4829if we use the Landau-Mignotte bound Bfx) and

9(x).
L102(f,9,0,9658)=

10000 Q28974 0 48290 86922-- 0 0 0 0
01000 0 0 28974 0--- 19316 0 0 0
00100 0 0 0 0.-- 48290 28974 19316)
00010 9658 48290 28974 19316 - 0 0 0 0
00001 0 0 9658 48290--- 28974 19316 0 0
000O0O 0 0 0 0.-- 48290 57948 28974 1931p
0 000 0 0-9658 96580 0 0--- 0 0 0 of
000O0O 0 0 -9658 96580 - - 0 0 0 0
000O0O 0 0 0 0. 0 0 0 0
000O0O 0 0 0 0. 0 0 0 0
000O0O 0 0 0 0--- -9658 96580 0 0
000O0O 0 0 0 0-- 0 0 -9658 96580

24 Communications of JSSAC Vol. 2

Hio2(f,9,0,4829t, 9) =

1 0 0] 4829 24145 14487 9658 24145- 43461 24145 14487 9658 0
010 0 14487 0 19316 0-- 33803 0 24145 0 t
001 0 0 0 14487 0.-- 28974 0 33803 0 2414p
0 0 0/-4829 48290 0 0 0-- 0 0 0 0 0
000 0 0 —-4829 48290 0-- 0 0 0 0 0
000 0 0 0 0-4829 ... 0 0 0 0 0
000 0 0 0 0 0--- 0 0 0 0 0
000 0 0 0 0 0-- 0 0 0 0 0
000 0 0 0 0 0--- 48290 0 0 0 0
000 0 0 0 0 0-- 0 —4829 48290 0 0
000 0 0 0 0 0-- 0 0 0 —-4829 48290

By the LLL algorithm we found the following short vectors and in fact their first rows are corre-
sponding to the caBcient vectors of cofactors and GCD tfx) andg(x).

L102(f,9,0,9658)=

34 8-6-7-5 00O 0--- 00 0 0
-12-2 0 0 1/-28974 0 0 9658--- —9658 0 —9658 19316)’
Hioo(f,g,0,4829t, 5) =
1 -5 4|0 00 0O 0 --- 00 00 0
(0 1 -1|0 214487 0O 4829 0--- 4829 0 -9658 O —24145)'

Note that 1) we show only the first and second shortest short vectors found though there are more
short vectors that are not corresponding to approximate cofactors and GCD, and 2) the LLL algo-
rithm can find the expected short vectors with much smajlemdcy in most cases. In fact, short
vectors in this example can be computed frgma»(f, g, 0, 10) andHio2(f,9,0,10t, S). <

3.2 Algorithm in Digits-wise Representation

We consider the case introduced in the beginning of this section hence we assume that all the
codficients have a priori errors on only the limited number of digits. For such polynomials, the
resulting tolerance defined in Definitiorl] easily becomes large even though the norm of errors

in the digits-wise representation is small. We need to adapt the definition to the digits-wise rep-
resentation. By the following definition, we have digits-wise toleranrggs = ¢ = 20, 1092 = 2

andesy = 4 in the co-norm for the pair off(x) = (4x + 5)(8x? + 4x + 3) + 20x?> — 10x and

g(X) = (4x + 5)(5%% + 7x + 6) — 10x3 + 10 for example.

Definition 9 (Digits-wise Approximate Polynomial GCD Over Integers)

Let f(X) andg(X) be polynomials in variable® = xi, ..., X, overZ, and lets be a small positive
integer. If they satisfif (X) = t(X)h(X) +4+(X), 9(X) = S(XYn(X) +44(X) andepw = max|ivechw(d+)ll
,lIvechw(dg) I} for some polynomialsis, Ay € Z[X], then we say that the above polynomntigX)
is andigits-wise approximate GCD over integeraw.r.t. the base numbdrand lengthn. We also
say thatt(X) ands(X) are digits-wise approximate cofactors over integersand we say that their
toleranceis ey, (|Ipll denotes a suitable vector nojm. <

For computing digits-wise approximate GCD over integers, the lemmas introduced above do
not guarantee that we can find the ftment vectors of approximate cofactors and approximate
GCD by the LLL algorithm. However, as same as the algorithm&.&j, the short vectors found
have a possibility that corresponding polynomi#i§ ands(X) € Z[X] satisfy S(X) f (X) + t(X)g(X) =~

Communications of JSSAC Vol. 2 25

0, and they can be candidate approximate cofactors. Moreover, in the digits-wise representation,
we have to distinguish correct digits from erroneous digits in the digits-wise lattice. We define the
following diagonal weight matrixi¥,w(kia, k£, C, &, Cg) to distinguish them.

Cs (I 68)

Whow(Kia, Ker, €, &, ce) = diag(L...,1W, ..., W), W= {Cp-1,...,Co}, Ci = :

Kig Ket

where we assume that the ¢eients have a priori error on theh digits in the basé representa-

tion for anyi € & c Z.o, andc andcg are penalty weights that force the LLL algorithm to reduce
more correct digits (columns) than other digits and reduce more erroneous digits tifaciestde
digits of candidate factors, respectively in the lattice basis. With this diagonal weight matrix, we
define the following matrices that are based/f,(f, g,r, 1) andHpw(f, 9,1, 1,1, 5), respectively.

- 'Zb,W(f? g» r9 Cs 87 CS) = ‘Lb,W(fs gs r3 1)(Wb,w(ﬁn—1,r + ,Bm—l,h Wﬁn+m—1,rs C, 85 C8)3
7.{b,W(fv g,rc, t7 S, 8’ CS) = 7_{b,W(fs gr, 17 t’ S)(Wb,W(ﬂr+l,O + 17 W(BH,O + Bm,o)’ C, 8’ CS)'

Lemma 10

Let B be the maximum absolute value of ¢édeents of any factors of(X) andg(X) with perturba-
tions. For the lattice generated by the row vectorsfgﬁ(f, g.r.¢;, &, cg) with the followingcy,
the LLL algorithm can find a short vector whose fjBat1, + Bm-1r €lements are a multiple of the
transpose of the cdigcient vectors of candidate approximate cofactor§(@f andg(X).

C; = Z(anl'r+ﬂW1'r+(W_l)ﬁn+W1"_1)/2 \/(ﬁn—l,r +,3m—1,r)82 + (#8 ><Bn+m—1,r)(b - 1)20(25
where#t& is the number of elements &1 <

Proof Lett(X) and s(X) be one of candidate approximate cofactorsf@f) and g(X), respec-
tively, satisfying|| vechw(S(X) f(X) + t(X)g(X)) I~ 0. In this case, the lattice generated by rows
of Lyw(f,9,1,¢z, &, Cg) has the following vectolicac for some integer.

Uecac = (the transpose of the cfiieient vectors of(X) andt(X), = - - - %)
WXBnim-1r

where all the correct digits are 0 on the right< B,.m-1r elements denoted by, The shortest
vector of this lattice must be smaller than or equaigg hence the LLL algorithm can find a short
vectord satisfying

dl, < 26w BroietW-DBnem10-1/2 |0 dl
< 20Br-tr 1+ 1fnem-1,~1)/2 \/(Bn—l,r +ﬁwl,r)82 + (#6 X ﬂnﬂml,r)(b - 1)2(%

since the lefBn_1; + Bm-1r €lements ofi;,c are bounded b and the erroneous digits on the right
W X Brnim-1r €lements ofi,c are bounded byb(— 1)cg.

Therefore, all the correct digits on the righitx Bn.m-1r €lements of the found short vector
must be zeros since all the non-zero correct digits on the wgt)8,.m-1r €lements of row vectors
in the lattice generated by the row vectors@fw(f,g, r,c;z, &, cg) are larger than or equal wy;
in absolute value. This means that the polynomi@fs and s(X) whose coéicient vectors are the
first Bn-1r + Bm-1r €lements ofi satisfy

|lall the correct digits of vegt(S(X) f(X) + t(X)g(X)ll= 0

hence they are candidate approximate cofactors(gf and g(X) though we may not guarantee

lIvechw(S(X) f(X) + t(X)g(X))ll~ O. 1

26 Communications of JSSAC Vol. 2

Lemma 11

Let B be the same maximum in Lemriid. For the lattice generated by the row vectors of
ﬂb,w(f, 0.1, ¢4, 1, 8, &, Cg) with the followingc;, the LLL algorithm can find a short vector whose
2-nd, ..., (Br+10 + 1)-th elements are a multiple of the transpose of theffiment vector of a
candidate approximate GCD &€x) andg(X).

Cjp = 2(Br+10+1+(W=1)(Bro+Bmo) -1)/2 \/(ﬁr+1,0 + 1)B? + (#E x (Bno + Bmo)) (b — 1)20(28
where#& is the number of elements &1 <
Proof The proof is similar to that of Lemndl 1

In general, there are short vectors that are not corresponding to approximate cofactors nor
approximate GCD with small perturbations (small tolerance) hence the above lemmas can not
guarantee that our algorithm always can find such a good approximate GCD. However, in most
cases, according to our numerical experiment in Sectjahe following algorithm works well,
in which we usecs = +/Bn_1r +Bm1rB andcs = +/Bri10+ 1B for Lyw(f,g.1,¢c &, ¢c) and
f{b,w(f, 0,r,ct, s &, Cg), respectively. We again note thatis a scaling weight to make the LLL al-
gorithm do reducing more erroneous digits thanfioient digits of candidate cofactors and GCD,
as in the proofs of Lemnf@and LemmdLQ

Algorithm 12 (digits-wise approximate GCD over integers)
Input: f,g € Z[X],n = tdeg(f), m = tdeg@), b,we Z.o, Ec{0,1,...,w—1}.
Output: h,t, se€ Z[X] satisfyingf(X) ~ t(X)h(X) andg(X) ~ s(X)h(X), or “not found”.
1. ¢ « 1 and whiles < min{|lvectw(f)Il, Ivecbw(9)ll} do2-14
(or do once for the possible smallegt
2. 1« min{n,m} — 1 and whiler > 0 do3-13(or do once for = 0)
3 ¢ «— max||f||,|ldll} and construct a matrﬁb,w(f, 0,r,c,&,Ce)
4, whilec < c; do5-12(or do once foc = max{||f|l, lldll})
5 apply the LLL algorithm to the lattice generated by the row vectors of
Lb,W(f’ g.r,c, Sa CS)

6. for each basis vector sorted by the norm of rigli,m-1, columns, dor-11

7. ¢« maxX{||f|l, |ldll} and construct a matrixt,(f,9,r,C,t, S &E,Cs)

8. while ¢’ < ¢z do9-11(or do once foc’ = max||fll, llgll})

9. apply the LLL algorithm to the lattice generated by the row vectors of

7-{b,W(f’ g.r.c, t,s 8, CS)
10. leth(X), t(X), S(X) be candidate approximate GCD and cofactors,
and outpuh(x), t(X), S(X) if max{|veckw(f — th)|l, [[vecbw(g - shll} < &

11 ¢ « ¢ xmax||fll, |ldll} (or multiply some positive integer)
12. ¢ «— cxmaxX||f|,lldl} (or multiply some positive integer)

13 rer-1
14. & « &x 10 (or multiply/add some positive integer)
15. output “not found”.

Example 13
Algorithm[I2 works for polynomialsf (x1, X2) andg(x, X2) below as follows.

f(x1, %) = 15336¢ - 365Ix;x2 — 11673 — 1271X§ + 11618, — 15979
O(X1, %) = 23184] — 15094 X, + 53046« + 2425(% —1949%; + 26112

Communications of JSSAC Vol. 2 27

We assume that these polynomials have a priori errors on 3heif4?) andath (4%) digits of
codficients in the basb = 4 representation (notdog,(max|| f ll, | 9llx}) = 7.85). By the
algorithm, we reduce the lattice generated by the row vectors of the following matrix Gfesi6
with c; = 69862063861742020%Ndcs = 2671636

L45(f,0,0,¢7,12,3),¢5) =

100000 6986206386174202099 1397248404198. .- 0
01000 0 0--- 0
00100 0 0--- 0
00010 0 —209586..22606297- - - 0
00001 0 0-- 0
00000 0 0--- 0
0 0 000 0-6986206386174202099 2794486808396 - - 0l
00000 0 -69862..74202099. - 0
00000 0 0-- 0
00000 0 0--- 0
00000 0 0 --- 27944825544696808396

We found the following short vectors that are sorted by the norm of right columns.

313 -41 -213 512-71 3220 0 0 0 —-320596320 —85492352 0 O--- O
165 -21 -113 272-43 1700 0 0 0 -1485429616-371357404 0 0-- O
295 -39 -203 480-73 3020 0 0 0 1301086732 325939592 0-0- O

We construct the following matrix of siz88 x 100 for the first short vector in the sté&pwith
Cj = 3997296864256278827 2Bdcs = 2181382

Hag(f,0,0,¢,t,8{2,3),ce) =

100 0 -119918..83648175: - - 0
010 0 0-- 0
001 0 0-- 0
000 0 0 --- —799459372851255765450
0 0 0 0—-399729686425627882725 1598911530900 - - 0
000 0 -39972.27882725. - 0l
000 0 0-- 0
000 0 0--- 0
000 0 0 --- 1598918745702511530900

We found the following short vectors that are sorted by the norm of right columns. We show only
short vectors having1 on their first elements as noted just after Lenfiina

151-31720000 0 -2181382 0---0
151-27720000 0 -2181382 0---0
151-29720000 0 -2181382 0---0[
149 -31 7210 0 0 0 -19632438-8725528-399729686425627882725 - 0

28 Communications of JSSAC Vol. 2

Hence, we ge213x; +41x,—313and322x; — 71x,+ 512 as approximate cofactoid2x; —31x,+51
as an approximate GCD d{x1, Xo) andg(Xa1, X2), andesg = V38 ~ 6.16 in the Euclidean norm.
Moreover, the perturbation polynomials &Bex 4% — 4%) + (=3 x 42 — 2 x 4%)x, and(-3x 4% — 3x
B)xq + (2% 42 + 3x 43)%2. <

Example 14

Though the discussions above and Algoriffighare only for the case of two polynomials, it is

easy to extend them to several polynomials, using the generalized subresultant mapping (see also
[25],[18]). We show some example of the case of three polynomials below as follows.

f(x,%) = 23112 —699%X; — 6117 — 127D + 11730 — 15963
(X1, Xo) 2304¢ — 6104 X, + 38432 + 2201X — 19493, + 26224
h(X1, o) —3744C + 24724 %, + 6060 — 99512 + 12700, + 6139

We assume that these polynomials have a priori errors on2hdifl6') digits of codficients in

the basd = 16 representation (notéog, (max||f|l. |9ll, lINl«}) =~ 3.81). We construct a matrix

of size69 x 89 which is similar toLpu(f,g.r,c 7,6, Cg) with ¢; = 281670895391086458&nd

Cs = 2443811and found the following short vectors that are sorted by the norm of right columns.

-313 41 321-512 71-32 -121 -321 520 0 -5354389901--- 0
496 —-64 -512 816-112 48 192 512-80/0 0 —-2856815059--- 0
-205 29 213-336 51-16 -77 -213 360 0 -1886622092--- O |-

For the first short vector found, corresponding to candidate three cofactors, we construct a matrix
of size58 x 76 which is similar toHpw(f, 0,1, Cj, 1, 8, &, Cg) with ¢y = 3936520631318340and
Cs = 1629208and found the following short vectors that are sorted by the norm of right columns.

-151-31720000006516832000000648876240000000006--0
-151-31720000006516832000000048876240000000006--0

Hence, we geB21x; + 41x, — 313 32x; — 71x; + 512 and-52x; + 321x, + 121 as approximate
cofactors,72x; — 31x; + 51 as an approximate GCD 6(xy, X2), 9(X1, X2) andh(xy, X2), andeig4 =
V65 ~ 8.06in the Euclidean norm. Moreover, the perturbation polynomial8até!x; —4x 16" x,,
—4x 16, + 7 x 16 and5 x 16Mx, — 2 x 16 4

4 Remarks

To see the ficiency of Algorithmi12, we have generated several sets of 100 pairs of polynomials:
A pair of bivariate polynomials of total degree randomly chosen frong]j2having their GCD

of total degree randomly chosen from 8], codficients of their factors randomly chosen from
[-100 100] and added noise bivariate polynomials of the same total degree, whdseieoks are
randomly chosen from9, 9] x 10 but 0 ate probability, for randomly chosen erroneous digit
within the codficient size. For example, the following pair of polynomials is one of them Q.0

Communications of JSSAC Vol. 2 29

andk = 4).

(-85 + 21xX2 + 883 + 18X5X1 — 99 X1 + 17Xy + 953 — 49%5 — 89, — 96)
X(46x1 + 92% + 47) + (8 10 + 1 x 10%%%3 — 1 x 105 + 4 x 10 %2
—-7x10°% - 6x 1O4x§x1 +8x% 10M3x — 6 X 10%%x; — 8 X 10%x
—5Xx 10%G — 7 x 10 + 7 x 100 + 7 X 10%%; — 6 x 10%),
(—85%3 + 21xX2 + 882 + 18X3X1 — 99X X1 + 17Xy + 953 — 49x5 — 89, — 96)
X(—80x; + 83X, + 62) + (=8 x 10°x] + 7 x 10%%:%3 + 5 x 100 + 9 x 10%x3x3
—6 % 10%%%3 — 5x 1002 + 8 x 10%3x; + 4 X 10M3x; — 9 x 10 %%
—4x 10%; +5x 10 — 2 x 1003 + 6 x 10°%5 — 9 x 10%%y).

We have computed their approximate GCDs by the algorithm avitHLO in the sted, r = 0in
the ste2 andc; = ¢z = 10'% andcg = 10° in the step$ and7. Note that all the experiments have
been computed by our preliminary implementation on Mathematica 8.0, and we use the max norm
for polynomials. TablBlshows the results where “#success” denotes the number of pairs for which
we got the expected digits-wise approximate polynomial GCD over integers and “#failure” denotes
otherwise. According to the result, our algorithm works well for most of pairs of polynomials.
However, the computation time is not good since the time-complexity of the lattice basis reduction
is heavily depending on the number of bases that is the number of rows of matrices in our algorithm.
Therefore, our algorithm works well but any faster algorithm is required to be used in the practical
situation.

probability 0.75 0.5 0.0
1st set| 2nd set| 1stset| 2nd set| 1st set| 2nd set
#success:#failureg 99:1 99:1 93:7 96:4 97:3 91:9

Table 1:The result of our experiments

Although we consider about only polynomials over integers in this paper, the digits-wise repre-
sentation can be extended to polynomials over reals or complexes. For example, we can construct
the Sylvester matrix of the given polynomials over reals in the digits-wise representation: dividing
mantissae of cdicients into several elements if the given polynomials do not have both of small
and large exponential parts. This may help us to treat erroneotitcez@s having errors on only
higher bits and should be studied as a further work.

The preliminary implementation on Mathematica 8.0, of our algorithm introduced in this paper
with some examples can be found at the following URLtp: //wwwmain.h.kobe-u.ac.jp/
~nagasaka/research/snap/snc2011plus.nb.

Acknowledgments

The author would like to thank Prof. Kaltofen for having the personal conversation on approximate
polynomial GCD over integers which is very helpful for the ideal of digit-wise lattice. Moreover,
this work was supported in part by Japanese Ministry of Education, Culture, Sports, Science and
Technology under Grant-in-Aid for Young Scientists, MEXT KAKENHI (22700011).
References

[1] L. Babai. On lovasz’ lattice reduction and the nearest lattice point prob&mbinatorica
6:1-13, 1986.

30 Communications of JSSAC Vol. 2

[2] K. Batselier, P. Dreesen, and B. De Moor. A geometrical approach to finding multivariate
approximate LCMs and GCD4.inear Algebra Appl.438(9):3618-3628, 2013.

[3] G. Chéze, A. Galligo, B. Mourrain, and J.-C. Yakoubsohn. A subdivision method for com-
puting nearest gcd with certificatioheoret. Comput. S¢i412(35):4493-4503, 2011.

[4] D. Christou and M. Mitrouli. Estimation of the greatest common divisor of many polynomials
using hybrid computations performed by the ERES methagpl. Numer. Anal. Comput.
Math,, 2(3):293-305, 2005.

[5] R. M. Corless, S. M. Watt, and L. Zhi.QR factoring to compute the GCD of univariate
approximate polynomialdEEE Trans. Signal Proces$2(12):3394-3402, 2004.

[6] G. M. Diaz-Toca and L. Gonzalez-Vega. Computing greatest common divisors and square-
free decompositions through matrix methods: the parametric and approximateldases.
Algebra Appl, 412(2-3):222-246, 2006.

[7] M. Elkadi, A. Galligo, and T. L. Ba. Approximate GCD of several univariate polynomials
with small degree perturbationd. Symbolic Compuyt47(4):410-421, 2012.

[8] I. Z. Emiris, A. Galligo, and H. Lombardi. Numerical univariate polynomial GCD.Time
mathematics of numerical analysis (Park City, UT, 199&)lume 32 ofLectures in Appl.
Math, pages 323—-343. Amer. Math. Soc., Providence, RI, 1996.

[9] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate GCDure
Appl. Algebra 117118:229-251, 1997. Algorithms for algebra (Eindhoven, 1996).

[10] S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi. Approximate factorization of multivariate
polynomials via diferential equations. IMSSAC 2004pages 167-174. ACM, New York,
2004.

[11] N. Howgrave-Graham. Approximate integer common divisor<ryptography and lattices
(Providence, RI, 2001yolume 2146 of.ecture Notes in Comput. Sqpages 51-66. Springer,
Berlin, 2001.

[12] N. Karcanias, S. Fatouros, M. Mitrouli, and G. H. Halikias. Approximate greatest common
divisor of many polynomials, generalised resultants, and strength of approximasbamput.
Math. Appl, 51(12):1817-1830, 2006.

[13] N. K. Karmarkar and Y. N. Lakshman. On approximate GCDs of univariate polynondials.
Symbolic Comput26(6):653—-666, 1998. Symbolic numeric algebra for polynomials.

[14] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring polynomials with rationdlicoe
cients.Math. Ann, 261(4):515-534, 1982.

[15] T.Y. Liand Z. Zeng. A rank-revealing method with updating, downdating, and applications.
SIAM J. Matrix Anal. Appl.26(4):918-946 (electronic), 2005.

[16] M. Mitrouli and N. Karcanias. Computation of the GCD of polynomials using Gaussian
transformations and shiftingnternat. J. Control58(1):211-228, 1993.

[17] K. Nagasaka. Approximate polynomial gcd over integeh€M Communications in Com-
puter Algebra42(3):124-126, 2008. (ISSAC 2008 poster session).

Communications of JSSAC Vol. 2 31

[18] K. Nagasaka. Approximate polynomial gcd over integdr&ymbolic Compyt46(12):1306—
1317, 2011.

[19] K. Nagasaka. An improvement in the lattice construction process of approximate polynomial
gcd over integers. IRroceedings of Symbolic-Numeric Computation (SNC2Qddges 63—
64. 2011. (extended abstract).

[20] K. Nagasaka and T. Masui. Extended qrgcd algorithm. In V. Gerdt, W. Koepf, E. Mayr, and
E. Vorozhtsov, editorsComputer Algebra in Scientific Computingplume 8136 ol_ecture
Notes in Computer Sciengeages 257—272. Springer International Publishing, 2013.

[21] M. Ochi, M. Noda, and T. Sasaki. Approximate greatest common divisor of multivariate
polynomials and its application to ill-conditioned systems of algebraic equatibrstorm.
Process.14(3):292-300, 1991.

[22] V. Y. Pan. Approximate polynomial gcds, Padé approximation, polynomial zeros and bipartite
graphs. InProceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
(San Francisco, CA, 1998pages 68—77, New York, 1998. ACM.

[23] V. Y. Pan. Computation of approximate polynomial GCDs and an extensitorm. and
Comput, 167(2):71-85, 2001.

[24] C. Réssner and J.-P. Seifert. The complexity of approximate optima for greatest common
divisor computations. IAlgorithmic number theory (Talence, 1998plume 1122 of ecture
Notes in Comput. Scipages 307-322. Springer, Berlin, 1996.

[25] D. Rupprecht. An algorithm for computing certified approximate GC ohivariate poly-
nomials. J. Pure Appl. Algebral139(1-3):255-284, 1999. flective methods in algebraic
geometry (Saint-Malo, 1998).

[26] T. Sasaki and M. Noda. Approximate square-free decomposition and root-finding of ill-
conditioned algebraic equations. Inform. Process12(2):159-168, 1989.

[27] A. Schonhage. Quasi-gcd computatiodsComplexity1(1):118-137, 1985.

[28] J. von zur Gathen, M. Mignotte, and I. E. Shparlinski. Approximate polynomial gcd: Small
degree and small height perturbatiodsSymbolic Compyt45(8):879-886, 2010.

[29] J.von zur Gathen and I. E. Shparlinski. Approximate polynomial gcd: small degree and small
height perturbations. IbATIN 2008: Theoretical informaticsolume 4957 of_ecture Notes
in Comput. Scj.pages 276—283. Springer, Berlin, 2008.

[30] C.J. Zarowski, X. Ma, and F. W. Fairman. QR-factorization method for computing the great-
est common divisor of polynomials with inexact ¢beents. IEEE Trans. Signal Process.
48(11):3042-3051, 2000.

[31] Z. Zeng and B. H. Dayton. The approximate GCD of inexact polynomials. 1. A multivariate
algorithm. InISSAC 2004pages 320-327. ACM, New York, 2004.

[32] L. Zhi. Displacement structure in computing approximate GCD of univariate polynomials.
In Computer mathematicgolume 10 ofLecture Notes Ser. Compupages 288-298. World
Sci. Publ., River Edge, NJ, 2003.

32 Communications of JSSAC Vol. 2

[33] L. Zhi and M. Noda. Approximate GCD of multivariate polynomia&irikaisekikenkysho
Kokyurokuy, (1138):64—76, 2000. Research on the theory and applications of computer algebra
(Japanese) (Kyoto, 1999).

[34] L. H. Zhiand M. Noda. Approximate GCD of multivariate polynomials damputer mathe-
matics (Chiang Mai, 2000yolume 8 ofLecture Notes Ser. Compupages 9—-18. World Sci.
Publ., River Edge, NJ, 2000.

Communications of JSSAC (2016)
Vol. 2, pp. 33 -42

Practice of Drawing Graphs of Implicit Functions of
Three Variables

Noriko Hyodo Yuji Kondoh

Salesian Polytechnic National Institute of Technology, Kagawa College

Hirokazu Murao Tomokatsu Saito

The University of Electro-Communications AlphaOmega Inc.

Tadashi Takahashi

Konan University

(Recervep 31/Oct/2014 Acceptep 16/Fes/2015)

Abstract

We have long been working on developing algorithms for drawing graphs of implicit functions.

In this paper, we investigate methods for trivariate cases as a simple extension of the existing
methods for bivariate cases. The basic strategy of our methods consists of division of the 3D
space in the display area into a contiguous sequence of tiny cubes, and the check for every cube
of the existence of the solutions to the polynomial equation defining an implicit function. The
method itself is characterized by the exact treatment with mathematical preciseness of numeric
calculation and formula manipulation provided by computer algebra system. The underlying
mathematics used in our most precise algorithm for bivariate cases cannot be extended direct to
trivariate cases, and there remains a small chance even for our current most rigorous algorithm
to miss the detection of a closed curve of solutions if it is isolated inside a cube. We explain
how we can simply extend our method to trivariate cases, and investigate the situations of the
solution graphs that each algorithm may miss. We also show some sample results obtained by
our several experimental implementations.

1 Introduction

There have been developed many mathematical software systems which support the functionality of
graph drawing. Visualization is useful for roughly grasping the behavior of mathematical functions.

It is important with visualization to present the overall behavior exactly and also not to lose critical
nature at some distinct points. Despite this, how to establish an accurate drawing method or the
preciseness of drawing methods are rarely discussed. Drawing the figure of the real zeros of the
equation of a multivariate polynomial, in other words, the graph of a real algebraic function, is
an old problem hard to solVg[. In general, the problem to obtain the real solution curves of a
polynomial exactly still be very dicult, because they may have isolated points or curves. Actually,

© 2016 Japan Society for Symbolic and Algebraic Computation

34 Communications of JSSAC Vol. 2

not a few existing software systems may fail without any notice. In this paper, we treat polynomial
equations with rational cégcients, and describe a method to plot the solution curves precisely.

The computer algebra system Rissir[2] equips with a function, calletplot, for plotting the
curves of implicit functions defined by bivariate polynomials. The method of plotting is based on a
principle for a graph to be mathematically precise, and on this principle, an algorithm is developed
for obtaining the solution curves. Thé&ectiveness of the proposed principle and the practicality of
the algorithms has been demonstrated by examples. More concretely, the method makes, internally,
use of an evaluation function of a square region to tell whether it contains any solution(s) of an
implicit function. We call this evaluation functiocharacterfunction (or characterfor short).

Every region covering the display area is checked by a character function. Character function can
be implemented in various ways, depending on the requirementffoieacy and mathematical
correctness in practice. The ultimate condition expected for character is to guarantee the existence
or non-existence of solutions. As describeddhdnd implemented with fplot, such an ultimate
character can be realized for 2D cases by making use of Grobner basis calculation. This method
cannot be directly extended to 3D cases.

Nowadays, various types of devices for 3D plotting are available, such as 3D display terminals
and 3D printers, and they are becoming very common in recent years. Furthermore, processors
widely used have obtained excessive high-performance, and it is expected that a huge amount of
calculations required for 3D graphics can be processed with reasortabieney by utilizing the
performance. With this recognition in mind, we shall treat implicit functions of three variables in
our plotting context with Rigasir, and we investigate our method toward the 3D extension in this
paper.

2 Fundamentals

2.1 Basic Concepts and Principle

Drawing the graph of mathematical functions is commonly recognized as an easy problem, despite
the difficulty in mathematical precise treatment. Every existing display device of any kind consists
of a large amount of “spots”, each of which has finite area or volume determined by the resolution.
A curve or a graph is usually drawn, regardless of connected or non-connected, as a set of spots,
thus, having some area or volume, although a point or a curve cannot have a width or thickness in
mathematical senses. Spot is often termegizsl in 2D cases andoxelin 3D cases. Then, in
what sense and to what extent the drawn figure is precise? l[ffisudli to give an answer to this
guestion in a mathematical well-defined manner. Notice that a graph shows only a sketch of the true
mathematical curve. By employing algebraic computation, however, we can give a mathematically
definite meaning of the drawn figure of the solution curves5)d], the authors described, starting
from the definitions of mathematical basic notions, the abstract meaning of plotting, and how we
can improve the mathematical preciseness in the computing methods actually used in practice, in
the context of plotting in the 2D space. As a preparation for the 3D-extension, we give a brief
review of the previous works by quoting some of the descriptiond]im[the following.

Let D be a connected compact subseRdf and letf : D — R be a function defined ob and
continuous. As inff], we propose the following principle for plotting the solutions to the equation
f = 0. We shall use aell as a terminology of the generalization of spot. The required properties
for cells will be explained later.

Plotting principle 1. A cell has am-dimensional volume.

Communications of JSSAC Vol. 2 35

2. A cell isplottedif it has a point inR" in common with the solutions, and any non-plotted
cell has no common point with the solutions.

Here,plottedmeans being displayed with a foreground color on the displaying device.

A plotting algorithm that satisfies the above principle is not easy to develop in general. The
difficulty lies in constructing féective procedure to decide whether a solution exists or not in a
given area. Required functionalities for an algorithms are outlined below.

o division of the domain of plotting area into a family of small sets of points, calédid

e method to determine whether the given equation has isolated singular points, and if it does, the
location of the cells in which the isolated singular points exist.

e method to determine whether a specified cell has any solution on its boundary.

e method to determine whether a specified cell contains any solutions which have no intersections
on the boundary, i.e., entirely contained closed cistdace.

2.2 Mathematical Description of Plotting

We describe the meaning of plotting with mathematical preciseness. On the above principle, plot-
ting the solution off = 0 is to decide for every cell defined @whether or not it intersects the
solution sef{ (X1, X2, ..., %)) € D[f(Xy, X2,..., %) = 0}. Let{C;|j = 1,..,m} be a family ofm
subsets oD.

Definition 1 We call{Cj| | = 1,...,m} a family of cells or resolution defined on D if everg;
is a connected closed subset of D,-DU%; Cj, andC;' N Ci' = 0 for j # k whereC;' and Cy!
denote sets of all interior points @f; andCy respectively.

Our main concern in plotting the zeros of a function is to compute the following function called a
character

Definition 2 We call a functiory : C; — {0, 1} a characteof f with resolution{C;} defined on D
if x(Cj) = 0implies f(x1, X2, ..., X)) # O for every point(xy, Xz, ..., X)) in C;j.

A character functiory guarantees that j#(C;) = 0 then the given functiori never vanish all over
the cellC;. It does not guarantee the existence of zerdsiofthe cellC; wheny(C;) = 1, however.
The condition for character is notffigiently tight to be used in practice for plotting the zeros of a
function, in general. We propose a strong property of character as follows.

Definition 3 A charactery of f with resolution{C;} on D isfaithful if x(C;) = 1implies that there
exists a poingxy, Xo, . .., Xn) in Cj such that {x¢, x2,..., %)) = 0.

The faithful character provides desired functionality for exact plotting. For general bivariate func-
tions, there are no known algorithms to compute faithful character, except for the one which applies
to bivariate polynomials with rational céieients BJ.

We consider how we can implement a character function concretely. Hereinafter, we limit our
concern to such cases that the faniy; } is composed of rectangular grid points, and weQgt
be{(Xy, ... %) | & <X < by, 1<l <n, a €Q, by € Q). Letly, denote an intervak, by].

36 Communications of JSSAC Vol. 2

Interval character. The function that checks if zero is contained in the interval vélligs, ..., l«n)
satisfies the condition for character, but cannot be faithful in most cases. This function is called
aninterval character

In general, it is quite dficult to give a concrete computing method for a character function, even
without requiring the faithfulness. We let ourselves get pragmatic. We focus on the detection of
zeros of a given polynomial, and introduce a notion of functions, cailledk characterwhich

are not necessarily character (in the sense of Defir#ljdsut satisfy the property of Definitid8

Also, in the following, we use the same term “character” referring to the functions used for the
determination of cell plotting.

2.3 Plotting in 2D-space

We describe our basic ideas used for 2D cases, i.e., for plotting zeros of a bivariate polynomial
f(x,y). Without loss of generality, we assunfés square-free for simplicity.

According to its definition, for a specified cell, character must detect and must not miss the
existence of any solution to the equatibfx,y) = 0 in the cell. Consider the case when a certain
cell contains the solution of = 0, and consider how to construct a function to determine the
existence of any solutions. We consider what could likely to happen with the cells containing the
zeros, and consider how it can be detected. In most cases, the curve would intersect with any of
the edges of the cell, and the existence of any solution on a line segment can be easily checked,
e.g., using the signs of the both endpoints or Sturm’s theorem. These observations lead to the
development of a series of character functions actually used in our implementatiépiaft for
2D cases as follows.

Sign (weak) character. Consider a certain celCy containing the solutions té = 0. Then, it
is likely that the signs off are not all equal at four corners 6%, i.e., @x1,a2), (Ok1, &2),
(a1, bk 2) and bk 1, bk2). Our simplest character function, called sign (weak) character, com-
putes and checks those signs.
Even if the curvef = 0 has any common point with any of the edges, this character may
have a chance to miss their existence as in the case that the curve intersects with one edge an
even number of times by taking their multiplicities into account. This type of omission can be
avoided simply by computing Sturm’s sequence.

Boundary (weak) character. If a certain cellCy contains the zeros df, then it is very likely that
f has its zeros on any of the four edges. Boundary (weak) character is designed to detect the
existence of the zeros on the edges of a cell. According to Sturm’s theorem, we can determine
the number of zeros of a univariate polynomial existing in a specified interval, and we shall
use this theorem to detect the existence of zeros. More concretely, for eaCh,ceél check
whether at least one of univariate polynomi&{sy 1, y), f(bk1,Y), (X a2) andf(x, bx2) have
zeros in the intervalk; for xandl for y. In practice, we may recursively apply the bisection
method and the detection by using Sturm’s theorem to each of full line segments of the grid in
the display area, until the interval of the bisected segments gets smaller than the resolution or
non-existence of zeros in the segment is confirmed, &j.in [

Both of the above two characters will fail to detect the existence of zeros in a cell if all the zeros
are of singular points or closed curves completely isolated inside the cell.

Implementation approach to a faithful character. We assume that is not only square-free but
irreducible. Singular points, if exist, can be obtained as solutions to the zero-dimensional sys-
tem of polynomial equation = 9f/dx = df /0y = 0. Also, on every closed curve, there must

Communications of JSSAC Vol. 2 37

exist finitely many points that satisfy the system of equatidfgx = 0 ordf /gy = 0. There-

fore, we can determine the locations of any cells containing isolated zeros by computing the
solutions via the Grébner basis of the system withiisient accuracy that makes the precision

of the locations smaller than the resolution.

This way of algebraic treatment plus the previous method for the detection on boundary can
establish a faithful character.

3 Extension for Plotting in 3D-space

We now consider the case with three variables, i.e., to plot zeros of trivariate implicit functions
f(x,y,2 = 0, in 3D space. Most of the arguments and the algorithms for 3D cases parallel those
of 2D cases. Our overall strategies and the algorithms derived from the intermediate value theorem
and Sturm’s theorem are made so simple as the mathematical correctness and the accuracy of
numeric calculation may rely on computer algebraic computation, and can be easily expanded
to 3D cases. However, there arises #idllt problem in 3D cases, if there exists an isolated
closed surface inside a voxel and we need to identify the precise location of the voxel. The rest
of the section is devoted to investigating the algorithms using various characters, towards the 3D-
extension, to some details from the practical point of view.

3.1 Character Functions for Graphs in 3D-space

The basic strategy of our algorithms is to check the existence of solutions against all cells or voxels
in the drawing area, using character function, and the algorithfies @i how character determines

the (non-)existence of solutions. We assume that all numeric calculations are done exactly or with
suficient accuracy.

3.2 Sign (Weak) Character

The simplest algorithm uses sign (weak) character. Based on the intermediate value theorem, sign
(weak) character determines the existence of zero from the sigh&of, 2) at the corners of a
voxel. The procedure of the algorithm using sign (weak) character consists of the following steps.

1. fix grids defining a set of voxels and fix the coordinates of all grid points in a display area
2. evaluatef (x, Y, 2) at all the grid points, and determine the zeroness or the signs of the values

3. if the values at all corner points of one voxel are non-zero and have the same sign, the voxel is
regarded containing no zeros.

This algorithm has such merits as
e required calculations can be dorf@@ently, and especially, can be performed in parallel, and
e it can be applied not only to algebraic equations but any continuous functions.

Notice that the algorithm is valid if the function to plot behaves gently, i.e., the value of function
changes slowly in the range of the coordinates of a single voxel. On the other hand, the algorithm
may miss the existence of zeros in such cases as the solution exists as an isolated singular point
in a voxel, the solution curysurface in a voxel is completely isolated or contained in a voxel, the
solution curvgsurface in a voxel is closed and its outward extension to the neighboring voxel, if
any, circumvent the corner points, and so on.

38 Communications of JSSAC Vol. 2

3.3 Boundary Character

Boundary character is designed to detect the existence of solutions on the boundary edge or face.
In 2D cases, Sturm’s theorem can be used to detect the solution on the edge, a boundai8]of cell [
The boundary of each voxel consists of six faces of a cube. If a voxel contains any solution, the
solution surfacurve is very likely to intersect with at least one of the six faces of the voxel cube.
Every voxel face is a grid square of some grid plane. We consider the intersection ¢poiat&)

of the surfacgeurve and each grid plane. On each grid plane, we consider the polynfixiglz),

i.e., the bivariate polynomiaf (x,y, 2z) obtained by the substitution corresponding to the plane,
and we determine a set of squares of the plane containing its zeros. For this determination, we
can use our method for 2D cases, and especially for completeness, we have only to use faithful
character algorithm. Notice that faithful character for 2D cases can determine the existence or
non-existence of solutions in a cell exactly. Therefore, boundary character for 3D cases can never
miss the existence of a solution as long as the syidacee has a point in common with any of the
boundaries of voxel. The only case that this algorithm may miss is those when the graph of the
solution is completely isolated inside a voxel. Treatment for those cases will be considered next.

3.4 Faithful Character

The role of character function is ideally the exact determination of the existence of solutions
in a specified one of regions, cells or voxels, equally divided by grids. We want detect even
those 3D cases when the cytugrface is isolated completely inside a single voxel. The isolated
curvegsurface must be closed, and as in 2D cases, the condition satisfied othérth@riffers
depending on the shape of the cystaface. If the isolated curigurface is a single point, it is
singular at the point and therefore, the following must be satisfied at the point:

of of of
_— = —= — = (1)

ox oy oz

In the case of closed surface, there always exists a point at which the tangent is parallel to the axis
of X, y or z, sayx afterwards, and then, the partial derivativefah that direction must be equal to

0 at the point. Usually, it is expected that there exist only a finite number of such points, in which

Fig. 1: Example: a closed surface completely isolated inside a voxel.

case the ideak f,0f/0x > is zero-dimensional and the solutions of the polynomial system of the
ideal determine the voxel position containing the surface. The above discussion can be summarized
as follows.

1. Taking the direction ok-axis as one direction, we compute the Grébner basis of polynomials
f andof /ox.

Communications of JSSAC Vol. 2 39

2. If the ideal turned out to be zero-dimensional, solve the polynomial system to obtain its zeros.

This process can always detect a single point of the graph component isolated inside a single voxel,
and is very likely to detect a closed surface inside a single voxel.

Fig. 2: Example dificult to detect: a closed curve completely isolated inside a voxel.

Very special is the case of closed curves, where the sigrdoks not change around the curve,
and therefore the conditiofil(is satisfied on every point of the curve. This means that the ideal
obtained by computing the Grobner basisfadind some of the partial derivatives diw.r.t. x, y
andzis of positive dimension, and the method for detection mentioned above cannot be used. As
a very simple example of this, we give the following equation

fxy,2 = (R+yP+Z2-1 +x=0

representing the unit circle of the intersection of a sphere and a plane, and we assume the voxel
has such a wide range that the circle is completely contained in a single voxel. The Grdbner basis
will give a set of polynomials of the plane and the circle. In such rare and simple cases of closed
curves, the location of the voxel containing a closed curve can be easily determined by some means,
however, in general, more advanced algorithm as cylindrical algebraic decomposition(CAD) will
be necessary. Further investigation is left for future study.

4 Empirical Study

As described in the previous section, it ifidiult to guarantee the mathematical preciseness in plot-
ting trivariate implicit functions, and even with our most precise algorithm using faithful character,
there remains a chance to miss a closed curve complete isolated inside a single voxel. However,
from a practical point of view, there may be a chance that such a tiny graphical component need
not be drawn because it is not visible, and if being very casual is allowed, we may say that such
a tiny component does noffact on the total appearance in most cases. We therefore, being very
pragmatic, started to implement the 3D-extension of our algorithm usingARisdor empirical

study. In what follows, we report a part of our study, and show some examples.

Using RisgAsir language The user language of Rigssir is equipped with a function to plot a
given set of coordinate data, in order to facilitate experimentation of drawing method. Our first
attempt was done by using this facility, and the algorithm of boundary character was implemented.
Figured3 andd are the sample output of this implementation. The defining polynomials used are
as follows:

R +y2+)7 -100@ +y?) + 62 -10=0 @)
R+ +2 -1 +(x-1/32F =0 ©)

f(xy.2)
f(x.y.2)

40 Communications of JSSAC Vol. 2

= EICIEY

I 0

RNSNANRRARAS

Fig. 3: Drawing example of Eq[Q) Fig. 4: Drawing example of Eq[3)

Fig[3represents the graph of E®)(n 128x 128x 128 grid, and Fifl does the graph of Eq3)
in 64 x 64 x 64 grid. These examples indicate that boundary characteffisiently useful for this
level of preciseness.

Using OpenGL for Drawing Graphical capability provided by the user language of Risia is
quite limited; even standard capabilities such as for scaling or for rotation are not available. Also,
the drawing speed is as fast as being tolerable for one shot drawing, but is quite slow by today’s
graphics standard. To remedy these defects, we developed a new drawing function which makes
use of OpenGL. OpenGL provides rich functions for graphics manipulation, which will ease the
development of standard graphics capabilities. We still use the implementation jAdtissser
language for calculations with character functions, and we simply replace the drawing part with our
new implementation using OpenGL. Two types of character functions are implemented, boundary
character and sign (weak) character. We use the boundary character in the following examples.
Figureds, [@andZ are the examples drawn by our new implementation inX288x 128 grid,
where the implicit functions used are defined respectively by the following equations:

f(xy.2 = 160¢+y*+ 22)2 —40(® +y?) + 242 -9=0, 4)
fxy,2 = (C+y¥+22-1°-x3®=0, (5)
f(xy,2 = (R+y+22-1) 7+ (x-1/32F =0. (6)

With our new implementation, remarkable speedup has been attained, and also, we recognized
again that boundary character idfstient for practical use. Additionally, we should mention that
the use of OpenGL, rather than the direct use of X as in the current implementation fAdRisa
makes it easier to port to a wide variety of platforms and to develop various graphical capabilities.
The experience and the result of our empirical study strongly support that the hard problem of
drawing 3D graphs of trivariate implicit functions can be treated witficent preciseness and
reasonable amount of computing time, and that our 3D-extended method is useful in practice.

Communications of JSSAC Vol. 2 41

Fig. 5: Drawing example of Eql) by OpenGLFig. 6: Drawing example of EqH) by OpenGL

- pIoL3) ooo

Fig. 7: Drawing example of Eql§) by OpenGL

5 Conclusion

In this paper, we investigated how we can draw 3D graphs of trivariate implicit functions exactly,
and reported our empirical study with some experimental implementation. The methods used and
implemented are the straightforward 3D-extension of the existing methods for 2D cases, each of
which uses a dierent type of character function. Our voxel-based algorithm checks every voxel
in the display area whether it contains the zero of the implicit function by character function. For
each type of character function, we explained what situation of fooirvg'surface may have a
chance to be not detected. Even faithful character, our sharpest character, may miss a closed curve
isolated inside a voxel, in which case the existence of such curve itself can be detected but its
(voxel) location cannot be identified by our simple algorithm.

Finally, we would like to point out the similarity and théiaity of our voxel-based algorithm
with 3D printers. The use of voxel as a smallest of plotting will be convenient if 3D printers
are targeted as an output device, because a pixel on printing device can be treated as one voxel.
Some typical type of 3D printers construct printed object by stacking layers of material, and the
processing structure of repetition of the voxel-based algorithm is same as the layer-by-layer printing
process and can be applied to the process. Notice that actual printing has such a problem as how to
add supports for points or parts of object floating in the air.

As explained before, our current algorithm is still incomplete. Investigation of appropriate

42 Communications of JSSAC Vol. 2

methods for detecting a closed curve isolated inside a single voxel and development of mathemati-
cally correct and complete algorithm are left for further study.

References

[1] R. Fateman. Honest plotting, global extrema, and interval arithmetic. In WEngdges
216-223.

[2] M. Noro and T. Takeshima. Rigasir — a computer algebra system. In Wailj, [pages
387-396.

[3] T. Saito. An extension of Sturm’s theorem to two dimensiofoceedings of the Japan
Academy, Ser. A Mathematical Scienc&¥(1):18-19, 1997.

[4] T. Saito. Displaying Zeros of Mathematical EquatiorBhD thesis, 2000. (in Japanese).

[5] T. Saito, Y. Kondoh, Y. Miyoshi, and T. Takeshima. Displaying real solution of mathematical
equationsJournal of JSSA(5(2):2—-21, 1998. (in Japanese).

[6] T. Saito, T. Takeshima, and T. HilanBractice and Application of Grébner Basis Computation
University of Tokyo Press, 2003. (in Japanese).

[7] P. S. Wang, editorProceedings of ISSAC '9Berkeley, CA, July 27—29 1992.

Editorial board

Editor-in-Chief Hiroyuki Sawada
Associate Editor-in-Chief Akira Terui
Editors: Ryuta Hashimoto

Satoshi Yamashita

International Advisory board
Bruno Buchberger
Hoon Hong
Hyungju Park
Dongming Wang

Communications ossac \Vol. 2 2016

Publisher Japan Society for Symbolic and Algebraic Computation
Office zip 124-0011

Katsushika-ku Yotsugi 1-26—2 AlphaOmega Inc.

	Contents
	Nakano
	Introduction
	Boolean Groebner Bases
	The Inoue algorithm and the Inoue invariants
	Formulation of puzzles of Sudoku type by a system of Boolean polynomial equations
	Main results

	Nagasaka
	Introduction
	The problem to be solved

	Approximate GCD by Lattice Basis Reduction
	Digits-wise Lattice
	Definitions of Digits-wise Representation
	Algorithm in Digits-wise Representation

	Remarks

	Hyodo
	Introduction
	Fundamentals
	Basic Concepts and Principle
	Mathematical Description of Plotting
	Plotting in 2D-space

	Extension for Plotting in 3D-space
	Character Functions for Graphs in 3D-space
	Sign (Weak) Character
	Boundary Character
	Faithful Character

	Empirical Study
	Conclusion

