Symbolic representation of polynomial systems for efficient manipulation and evaluation

Daniel Bates Department of Mathematics University of Notre Dame Notre Dame, IN USA

Abstract

I, with Andrew Sommese (University of Notre Dame) and Charles Wampler (GM Research & Development), with some early work of Chris Monico (Texas Tech University), have been developing a new software package, Bertini, to numerically compute the zero- and positivedimensional solutions of polynomial systems using a number of recent techniques as well as adaptive precision.

A fundamental design issue when planning Bertini was the internal representation of polynomial systems. We chose to use straight-line programs since they allow for very efficient evaluation, simple automatic differentiation, and polynomials in nonstandard forms. In this talk, I will discuss how Bertini parses polynomials systems into straight-line programs as well as how multi-homogenization and differentiation may be carried out automatically.